Page 181 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 181

References    179




                  [25] A.J. Giustini, A.A. Petryk, S.M. Cassim, J.A.  Tate, I. Baker, P.J. Hoopes, Magnetic
                     nanoparticle hyperthermia in cancer treatment, Nano Life 1 (01n02) (2010) 17–32.
                  [26] S.  Kikuchi,  K.  Saito,  M.  Takahashi,  K.  Ito,  Temperature  elevation  in  the  fetus  from
                     electromagnetic exposure during magnetic resonance imaging, Phys. Med. Biol. 55 (8)
                     (2010) 2411.
                  [27] C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and
                     controlled drug delivery, Adv. Drug Deliv. Rev. 63 (9) (2011) 789–808.
                  [28] C.H. Hou, S.M. Hou, Y.S. Hsueh, J. Lin, H.C. Wu, F.H. Lin, The in vivo performance of
                     biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials
                     30 (23–24) (2009) 3956–3960.
                  [29] Y. Zhang, Y. Zhai, Magnetic induction heating of nano-sized ferrite particle, in: Advances
                     in  Induction  and  Microwave  Heating  of  Mineral  and  Organic  Materials,  IntechOpen,
                     2011.
                  [30] J. Smith, H.P.J. Wijn, Ferrites, Cleaver-Hume Press Ltd, London, (1959).
                  [31] A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J.
                     Magn. Magn. Mater. 354 (2014) 163–172.
                  [32] S. Dutz, R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: basic
                     principles, realities and physical limitations of hyperthermia for tumour therapy, Int. J.
                     Hyperther. 29 (8) (2013) 790–800.
                  [33] Y.W. Jun, J.W. Seo, J. Cheon, Nanoscaling laws of magnetic nanoparticles and their ap-
                     plicabilities in biomedical sciences, Acc. Chem. Res. 41 (2) (2008) 179–189.
                  [34] R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn.
                     Mater. 252 (2002) 370–374.
                  [35] R. Hergt, S. Dutz, Magnetic particle hyperthermia—biophysical limitations of a vision-
                     ary tumour therapy, J. Magn. Magn. Mater. 311 (1) (2007) 187–192.
                  [36] T. Lunnoo, T. Puangmali, Capture efficiency of biocompatible magnetic nanoparticles in
                     arterial flow: a computer simulation for magnetic drug targeting, Nanoscale Res. Lett. 10
                     (1) (2015) 426.
                  [37] S.M.A. Ne’mati, M. Ghassemi, A. Shahidian, Numerical investigation of drug delivery
                     to cancerous solid tumors by magnetic nanoparticles using external magnet, Transport
                     Porous Med. 119 (2) (2017) 461–480.
                  [38] U. Windberger, A. Bartholovitsch, R. Plasenzotti, K.J. Korak, G. Heinze, Whole blood
                     viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: ref-
                     erence values and comparison of data, Exp. Physiol. 88 (3) (2003) 431–440.
                  [39] S. Ramanujan, A. Pluen, T.D. McKee, E.B. Brown, Y. Boucher, R.K. Jain, Diffusion and
                     convection in collagen gels: implications for transport in the tumor interstitium, Biophys.
                     J. 83 (3) (2002) 1650–1660.
   176   177   178   179   180   181   182   183   184   185   186