Page 44 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 44
References 41
[4] M.S. Kandanapitiye, M. Gao, J. Molter, C.A. Flask, S.D. Huang, Synthesis, character-
ization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal
clearable particulate CT contrast agents, Inorg. Chem. 53 (19) (2014) 10189–10194.
[5] C. Briguori, D. Tavano, A. Colombo, Contrast agent-associated nephrotoxicity, Progr.
Cardiovasc. Dis. 45 (6) (2003) 493–503.
[6] Widmark, J. M. (2007, October). Imaging-related medications: a class overview. In
Baylor University Medical Center Proceedings (Vol. 20, No. 4, pp. 408-417). Taylor &
Francis.
[7] J.M. Idée, B. Guiu, Use of Lipiodol as a drug-delivery system for transcatheter arterial
chemoembolization of hepatocellular carcinoma: a review, Crit. Rev. Oncol. /Hematol.
88 (3) (2013) 530–549.
[8] C.E. Suckow, D.B. Stout, MicroCT liver contrast agent enhancement over time, dose, and
mouse strain, Mol. Imaging Biol. 10 (2) (2008) 114–120.
[9] D.P. Cormode, T. Skajaa, Z.A. Fayad, W.J. Mulder, Nanotechnology in medical imaging:
probe design and applications, Arterioscl. Throm. Vasc. Biol. 29 (7) (2009) 992–1000.
[10] J.D. O’Sullivan, J. Behnsen, T. Starborg, A.S. MacDonald, A.T. Phythian-Adams, K.J.
Else, et al. X-ray micro-computed tomography (µCT): an emerging opportunity in para-
site imaging, Parasitology 145 (7) (2018) 848–854.
[11] E.K. Oikonomou, M. Marwan, M.Y. Desai, J. Mancio, A. Alashi, E.H. Centeno, et al.
Non-invasive detection of coronary inflammation using computed tomography and pre-
diction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of pro-
spective outcome data, Lancet 392 (10151) (2018) 929–939.
[12] R. Tang, M. Saksena, S.B. Coopey, L. Fernandez, J.M. Buckley, L. Lei, et al. Intraop-
erative micro-computed tomography (micro-CT): a novel method for determination of
primary tumour dimensions in breast cancer specimens, Br. J. Radiol. 89 (1058) (2016)
20150581.
[13] D.J. Brenner, E.J. Hall, Computed tomography—an increasing source of radiation expo-
sure, N. Engl. J. Med. 357 (22) (2007) 2277–2284.
[14] C. Sun, J.S. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery,
Adv. Drug Deliv. Rev. 60 (11) (2008) 1252–1265.
[15] J.M. Tognarelli, M. Dawood, M.I. Shariff, V.P. Grover, M.M. Crossey, I.J. Cox, et al.
Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians,
J. Clin. Exp. Hepatol. 5 (4) (2015) 320–328.
[16] H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents, Adv.
Mater. 21 (21) (2009) 2133–2148.
[17] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical
diagnosis and therapy, J. Mater. Chem. 14 (14) (2004) 2161–2175.
[18] G.J. Strijkers, M. Mulder, J. Willem, F. Van Tilborg, A. Geralda, K. Nicolay, MRI con-
trast agents: current status and future perspectives, Anti-Cancer Agents Med. Chem. 7 (3)
(2007) 291–305.
[19] W. Chen, D.P. Cormode, Z.A. Fayad, W.J. Mulder, Nanoparticles as magnetic resonance
imaging contrast agents for vascular and cardiac diseases, Wiley Interdiscipl. Rev.: Nano-
med. Nanobiotechnol. 3 (2) (2011) 146–161.
[20] K.K. Shung, Diagnostic ultrasound: past, present, and future, J. Med. Biol. Eng. 31 (6)
(2011) 371–374.
[21] A.J. Coleman, J.E. Saunders, A review of the physical properties and biological effects
of the high amplitude acoustic fields used in extracorporeal lithotripsy, Ultrasonics 31 (2)
(1993) 75–89.