Page 150 - Biodegradable Polyesters
P. 150

128  5 Crystallization of Poly(lactic acid)

                    51. Androsch, R. and Di Lorenzo, M.L.  (PLLA) – crystallization and mechanical
                       (2013) Kinetics of crystal nucleation  property effects. Compos.Sci.Technol.,
                       of poly(L-lactic acid). Polymer, 54,  70, 815–821.
                       6882–6885.                    62. Ray, S.S., Maiti, P., Okamoto, M.,
                    52. Androsch, R. and Di Lorenzo, M.L.  Yamada, K., and Ueda, K. (2002) New
                       (2013) Crystal nucleation in glassy  polylactide/layered silicate nanocom-
                       poly(L-lactic acid). Macromolecules, 46,  posites. 1. Preparation, characterization,
                       6048–6056.                       and properties. Macromolecules, 35,
                    53. De Santis, F., Pantani, R., and  3104–3110.
                       Titomanlio, G. (2011) Nucleation and  63. Yu, J. and Qiu, Z. (2011) Effect of
                       crystallization kinetics of poly(lactic  low octavinyl-polyhedral oligomeric
                       acid). Thermochim. Acta, 522, 128–134.  silsesquioxanes loadings on the melt
                    54. Sánchez, M.S., Mathot, V.B.F.,  crystallization and morphology of
                       Vanden Poel, G., and Ribelles, J.L.G.  biodegradable poly(L-lactide). Ther-
                       (2007) Effect of cooling rate on the  mochim. Acta, 519, 90–95.
                       nucleation kinetics of poly(L-lactic  64. Wang,S., Han, C.,Bian, J.,Han,L.,
                       acid) and its influence on morphology.  Wang, X., and Dong, L. (2011) Mor-
                       Macromolecules, 40, 7989–799.    phology, crystallization and enzymatic
                    55. Hernández Sánchez, F., Molina Mateo,  hydrolysis of poly(L-lactide) nucleated
                       J., Romero Colomer, F.J.,        using layered metal phosphonates.
                       Salmerón Sánchez, M., Gómez Ribelles,  Polym. Int., 60, 284–295.
                       J.L., and Mano, J.F. (2005) Influence  65. Hu, Y., Hu, Y.S., Topolkaraev, V., Hiltner,
                       of low-temperature nucleation on the  A., and Baer, E. (2003) Crystalliza-
                       crystallization process of poly(L-lactide).  tion and phase separation in blends of
                       Biomacromolecules, 6, 3283–3290.  high stereoregular poly(lactide) with
                    56. Zhang, T.,Hu, J.,Duan, Y.,Pi, F.,  poly(ethylene glycol). Polymer, 44,
                       and Zhang, J. (2011) Physical aging  5681–5689.
                       enhanced mesomorphic structure in  66. Wang, Z., Wang, X., Hsiao, B.S.,
                       melt-quenched poly(L-lactic acid). J.  Andjelic, S., Jamiolkowski, D., McDivitt,
                       Phys. Chem. B, 115, 13835–1384.  J., Fischer, J., Zhou, J., and Han, C.C.
                    57. Li, H. and Huneault, M.A. (2007) Effect  (2001) Time-resolved isothermal crys-
                       of nucleation and plasticization on  tallization of absorbable PGA-co-PLA
                       the crystallization of poly(lactic acid).  copolymer by synchrotron small-angle
                       Polymer, 48, 6855–6866.          X-ray scattering and wide-angle X-ray
                    58. Penco, M., Spagnoli, G., Peroni,  diffraction. Polymer, 42, 8965–8973.
                       I., Rahman, M.A., Frediani, M.,  67. Pluta, M. (2004) Morphology and prop-
                       Oberhauser, W., and Lazzeri, A. (2011)  erties of polylactide modified by thermal
                       Effect of nucleating agents on the molar  treatment, filling with layered sili-
                       mass distribution and its correlation  cates and plasticization. Polymer, 45,
                       with the isothermal crystallization  8239–8251.
                       behavior of poly(L-lactic acid). J. Appl.  68. Sakai, F., Nishikawa, K., Inoue, Y.,
                       Polym. Sci., 122, 3528–3536.     and Yazawa, K. (2009) Nucleation
                    59. Harris, A.M. and Lee, E.C. (2008)  enhancement effect in poly(L-lactide)
                       Improving mechanical performance  (PLLA)/poly(ε-caprolactone) (PCL) blend
                       of injection molded PLA by controlling  induced by locally activated chain mobil-
                       crystallinity. J. Appl. Polym. Sci., 107,  ity resulting from limited miscibility.
                       2246–2255.                       Macromolecules, 42, 8335–8342.
                    60. Li, H. and Huneault, M.A. (2008) Crys-  69. Di Lorenzo, M.L., Rubino, P., and Cocca,
                       tallization of PLA/thermoplastic starch  M. (2013) Miscibility and properties
                       blend. Int. Polym. Proc., 23, 412–418.  of poly(L-lactic acid)/poly(butylene
                    61. Pei, A., Zhou, Q., and Berglund,  terephthalate) blends. Eur.Polym.J., 49,
                       L.A. (2010) Functionalized cel-  3309–3317.
                       lulose nanocrystals as biobased  70. Di Lorenzo, M.L., Rubino, P., and
                       nucleation agents in poly(L -lactide)  Cocca, M. (2014) Isothermal and
   145   146   147   148   149   150   151   152   153   154   155