Page 150 - Biodegradable Polyesters
P. 150
128 5 Crystallization of Poly(lactic acid)
51. Androsch, R. and Di Lorenzo, M.L. (PLLA) – crystallization and mechanical
(2013) Kinetics of crystal nucleation property effects. Compos.Sci.Technol.,
of poly(L-lactic acid). Polymer, 54, 70, 815–821.
6882–6885. 62. Ray, S.S., Maiti, P., Okamoto, M.,
52. Androsch, R. and Di Lorenzo, M.L. Yamada, K., and Ueda, K. (2002) New
(2013) Crystal nucleation in glassy polylactide/layered silicate nanocom-
poly(L-lactic acid). Macromolecules, 46, posites. 1. Preparation, characterization,
6048–6056. and properties. Macromolecules, 35,
53. De Santis, F., Pantani, R., and 3104–3110.
Titomanlio, G. (2011) Nucleation and 63. Yu, J. and Qiu, Z. (2011) Effect of
crystallization kinetics of poly(lactic low octavinyl-polyhedral oligomeric
acid). Thermochim. Acta, 522, 128–134. silsesquioxanes loadings on the melt
54. Sánchez, M.S., Mathot, V.B.F., crystallization and morphology of
Vanden Poel, G., and Ribelles, J.L.G. biodegradable poly(L-lactide). Ther-
(2007) Effect of cooling rate on the mochim. Acta, 519, 90–95.
nucleation kinetics of poly(L-lactic 64. Wang,S., Han, C.,Bian, J.,Han,L.,
acid) and its influence on morphology. Wang, X., and Dong, L. (2011) Mor-
Macromolecules, 40, 7989–799. phology, crystallization and enzymatic
55. Hernández Sánchez, F., Molina Mateo, hydrolysis of poly(L-lactide) nucleated
J., Romero Colomer, F.J., using layered metal phosphonates.
Salmerón Sánchez, M., Gómez Ribelles, Polym. Int., 60, 284–295.
J.L., and Mano, J.F. (2005) Influence 65. Hu, Y., Hu, Y.S., Topolkaraev, V., Hiltner,
of low-temperature nucleation on the A., and Baer, E. (2003) Crystalliza-
crystallization process of poly(L-lactide). tion and phase separation in blends of
Biomacromolecules, 6, 3283–3290. high stereoregular poly(lactide) with
56. Zhang, T.,Hu, J.,Duan, Y.,Pi, F., poly(ethylene glycol). Polymer, 44,
and Zhang, J. (2011) Physical aging 5681–5689.
enhanced mesomorphic structure in 66. Wang, Z., Wang, X., Hsiao, B.S.,
melt-quenched poly(L-lactic acid). J. Andjelic, S., Jamiolkowski, D., McDivitt,
Phys. Chem. B, 115, 13835–1384. J., Fischer, J., Zhou, J., and Han, C.C.
57. Li, H. and Huneault, M.A. (2007) Effect (2001) Time-resolved isothermal crys-
of nucleation and plasticization on tallization of absorbable PGA-co-PLA
the crystallization of poly(lactic acid). copolymer by synchrotron small-angle
Polymer, 48, 6855–6866. X-ray scattering and wide-angle X-ray
58. Penco, M., Spagnoli, G., Peroni, diffraction. Polymer, 42, 8965–8973.
I., Rahman, M.A., Frediani, M., 67. Pluta, M. (2004) Morphology and prop-
Oberhauser, W., and Lazzeri, A. (2011) erties of polylactide modified by thermal
Effect of nucleating agents on the molar treatment, filling with layered sili-
mass distribution and its correlation cates and plasticization. Polymer, 45,
with the isothermal crystallization 8239–8251.
behavior of poly(L-lactic acid). J. Appl. 68. Sakai, F., Nishikawa, K., Inoue, Y.,
Polym. Sci., 122, 3528–3536. and Yazawa, K. (2009) Nucleation
59. Harris, A.M. and Lee, E.C. (2008) enhancement effect in poly(L-lactide)
Improving mechanical performance (PLLA)/poly(ε-caprolactone) (PCL) blend
of injection molded PLA by controlling induced by locally activated chain mobil-
crystallinity. J. Appl. Polym. Sci., 107, ity resulting from limited miscibility.
2246–2255. Macromolecules, 42, 8335–8342.
60. Li, H. and Huneault, M.A. (2008) Crys- 69. Di Lorenzo, M.L., Rubino, P., and Cocca,
tallization of PLA/thermoplastic starch M. (2013) Miscibility and properties
blend. Int. Polym. Proc., 23, 412–418. of poly(L-lactic acid)/poly(butylene
61. Pei, A., Zhou, Q., and Berglund, terephthalate) blends. Eur.Polym.J., 49,
L.A. (2010) Functionalized cel- 3309–3317.
lulose nanocrystals as biobased 70. Di Lorenzo, M.L., Rubino, P., and
nucleation agents in poly(L -lactide) Cocca, M. (2014) Isothermal and