Page 151 - Biodegradable Polyesters
P. 151
References 129
non-isothermal crystallization of Spherulite growth of low-molecular-
poly(L-lactic acid)/poly(butylene tereph- weight poly(lactic acid)s from the melt.
thalate) blends. J. Appl. Polym. Sci., 131, Biomacromolecules, 5, 1181–1186.
DOI:10.1002/app.40372. 82. Sarasua, J.R., Rodríguez, N.L., Arraiza,
71. Marega, C., Marigo, A., Di Noto, V., and A.L., and Meaurio, E. (2005) Stere-
Zannetti, R. (1992) Structure and crys- oselective crystallization and specific
tallization kinetics of poly(L-lactic acid). interactions in polylactides. Stere-
Makromol. Chem., 193, 1599–1606. ocomplexation and morphology of
72. Di Lorenzo, M.L. (2001) Determination polylactides. Macromolecules, 38,
of spherulite growth rates of poly(L- 8362–8371.
lactic acid) using combined isothermal 83. Brochu, S., Prud’homme, R.E., Barakat,
and non-isothermal procedures. Polymer, I., and Jérôme, R. (1995) Stereocomplex-
42, 9441–9446. ation and morphology of polylactides.
73. Di Lorenzo, M.L. (2005) Crystalliza- Macromolecules, 28, 5230–5239.
tion behavior of poly(L-lactic acid). Eur. 84. Zhang, J., Tashiro, K., Tsuji, H., and
Polym. J., 41, 569–575. Domb, A.J. (2007) Investigation of
74. Tsuji, H.,Miyase, T.,Tezuka, Y.,and phase transitional behavior of poly(L-
Saha, S.K. (2005) Physical properties, lactide)/poly(D-lactide) blend used to
crystallization, and spherulite growth prepare the highly-oriented stereocom-
of linear and 3-arm poly(L-lactide)s. plex. Macromolecules, 40, 1049–1054.
Biomacromolecules, 6, 244–254. 85. Brizzolara, D., Cantow, H.J., Diederichs,
75. Di Lorenzo, M.L. (2006) The crys- K., Keller, E., and Domb, A.J. (1996)
tallization and melting processes of Mechanism of the stereocomplex forma-
poly(L-lactic acid). Macromol. Symp., tion between enantiomeric poly(lactide)s.
234, 176–183. Macromolecules, 29, 191–197.
76. Wunderlich, B. (1976) Macromolecular 86. Tsuji, H. (2005) Poly(lactide) Stereocom-
Physics, Crystal Nucleation, Growth, plexes: formation, structure, properties,
Annealing, vol. 2, Academic Press, New degradation, and applications. Macromol.
York. Biosci., 5, 569–597.
77. Sarasua, J.R., Prud’homme, R.E., 87. Fukushima, K. and Kimura, Y. (2006)
Wisniewski, M., Le Borgne, A., and Stereocomplexed polylactides (Neo-PLA)
Spassky, N. (1998) Crystallization and as high-performance bio-based poly-
melting behavior of polylactides. Macro- mers: their formation, properties, and
molecules, 31, 3895–3905. application. Polym. Int., 55, 626–642.
78. Baratian, S., Hall, E.S., Lin, J.S., Xu, 88. Okihara, T., Tsuji, M., Kawaguchi, A.,
R., and Runt, J. (2001) Crystallization Katayama, K., Tsuji, H., Hyon, S.H.,
and solid-state structure of random and Ikada, Y. (1991) Crystal structure
polylactide copolymers: poly(L-lactide- of stereocomplex of poly(L-lactide) and
co-D-lactide)s. Macromolecules, 34, poly(D-lactide). J. Macromol. Sci., Phys.,
4857–4864. B30, 119–140.
79. Wu, L. and Hou, H. (2010) Isothermal 89. Cartier, L., Okihara, T., and Lotz, B.
cold crystallization and melting behav- (1997) Triangular polymer single
iors of poly(L-lactic acid)s prepared by crystals: stereocomplexes, twins, and
melt polycondensation. J. Appl. Polym. frustrated structures. Macromolecules,
Sci., 115, 702–708. 30, 6313–6322.
80. Ikada, Y., Jamshidi, K., Tsuji, H., and 90. Sawai, D., Tsugane, Y., Tamada, M.,
Hyon, S.H. (1987) Stereocomplex forma- Kanamoto, T., Sungil, M., and Hyon,
tion between enantiomeric poly(lactides). S.H. (2007) Crystal density and heat of
Macromolecules, 20, 904–906. fusion for a stereo-complex of poly(L-
81. Tsuji, H. and Tezuka, Y. (2004) lactic acid) and poly(D-lactic acid). J.
Stereocomplex formation between Polym. Sci.,PartB:Polym.Phys., 45,
enantiomeric poly(lactic acid)s. 12. 2632–2639.