Page 255 - Biodegradable Polyesters
P. 255

References  233

               12. Evstatiev, M. and Fakirov, S. (1992)  24. Lederer, A., Harnisch, C., Bhattacharyya,
                  Microfibrillar reinforcement of polymer  D., and Fakirov, S. (2010) Organic sol-
                  blends. Polymer, 33, 877–880.   vent traces in fibrillar scaffolds for tissue
               13. Evstatiev, M., Petrovich, S., and Fakirov,  engineering. J. Biomimetics Biomater.
                  S. (1993) Microfibrillar reinforced com-  Tissue Eng., 7,1–6.
                  posites from binary and ternary blends  25. Fakirov, S., Bhattacharyya, D., and
                  of polyesters and Nylon 6. Macro-  Hutmacher, D. (2008) in Processing
                  molecules, 26, 5219–5226.       and Fabrication of Advanced Materi-
               14. Evstatiev, M., Nicolov, N., and Fakirov,  als – XVII,vol. II (eds N. Bhatnagar
                  S. (1996) Morphology of microfibrillar  and T.S. Srivatsan), I K International,
                  reinforced composites from polymer  New Delhi, pp. 794–803.
                  blends. Polymer, 37, 4455–4463.  26. Bhattacharyya, D. and Fakirov, S. (2009)
               15. Fakirov, S.,Evstatiev,M., andFriedrich,  in Nano- and Micromechanics of Poly-
                  K. (2000) in Polymer Blends: Formula-  mer Blends and Composites (eds J.
                  tion and Performance,vol. II (eds D.R.  Karger-Kocsis and S. Fakirov), Hanser,
                  Paul and C.B. Bucknall), John Wiley &  Munich, pp. 167–205.
                  Sons, Inc, New York, pp. 455–476.  27. Fakirov, S. (2006) Modified Soxh-
                                                  let apparatus for high temperature
               16. Fakirov, S.,Evstatiev,M., andFriedrich,
                                                  extraction. J. Appl. Polym. Sci., 102,
                  K. (2002) in Handbook of Thermo-
                                                  2013–2014.
                  plastic Polyesters (ed S. Fakirov),
                                               28. Kotek, R., Jung, D., Tonelli, A.E., and
                  Wiley-VCH Verlag GmbH, Weinhem,
                                                  Vasanthan, N. (2005) Novel methods
                  pp. 1093–1132.
               17. Fakirov, S. and Bhattacharyya, D. (eds)  for obtaining high modulus aliphatic
                                                  polyamide fibers. J. Macromol. Sci.
                  (2012) Synthetic Polymer-Polymer Com-
                                                  -Polym. Rev., C45 (3), 201–230.
                  posites, Hanser Publisher, Munich,  29. Kotek, R., Pang, K., Schmidt, B., and
                  (2012).
                                                  Tonelli, A.E. (2004) Synthesis and gas
               18. Fakirov, S., Bhattacharyya, D., Lin, R.J.T.,
                                                  barrier characterization of poly(ethylene
                  Fuchs, C., and Friedrich, K. (2007) Con-  isophthalate). J. Polym. Sci., Part B:
                  tribution of coalescence to microfibril
                                                  Polym. Phys., 42, 4247–4254.
                  formation in polymer blends during cold  30. Vasanthan, N., Kotek, R., Jung, D.W.,
                  drawing. J. Macromol. Sci. Part Phys.,
                                                  Shin, D., Tonelli, A.E., and Salem, D.R.
                  B46, 183–193.
                                                  (2004) Lewis acid-base complexation
               19. Fakirov, S., Bhattacharyya, D., and
                                                  of polyamide 66 to control hydrogen
                  Shields, R.J. (2008) Nanofibril rein-
                                                  bonding, extensibility and crystallinity.
                  forced composites from polymer blends.
                                                  Polymer, 45, 4077–4085.
                  Colloids Surf., A, 313,2–8.  31. Kuo, S.W. (2008) Hydrogen-bonding
               20. Fakirov, S. (2013) Nano- and microfibril-  in polymer blends. J. Polym. Res., 15,
                  larsingle-polymercomposites: areview.  459–486.
                  Macromol. Mater. Eng., 298, 9–32.  32. Shui, X., He, Y., Asakawa, N., and Inoue,
               21. Fakirov, S. (2013) Nano-/microfibrillar  Y. (2001) Miscibility and phase structure
                  polymer-polymer and single polymer  of binary blends of poly(L-lactide) and
                  composites: the converting instead of  poly(vinyl alcohol). J. Appl. Polym. Sci.,
                  adding concept. Compos.Sci.Technol,  81, 762–772.
                  89, 211–225.                 33. 33. Bini, T.B., Gao, S., Wang, S., and
               22. Greiner, A. and Wendorff, J.H. (2007)  Ramakrishna, S. (2006) Poly(l-lactide-co-
                  Electrospinning: a fascinating method  glycolide) biodegradable microfibers and
                  for the preparation of ultrathin fibers.  electrospun nanofibers for nerve tissue
                  Angew. Chem. Int. Ed., 46, 5670–5703.  engineering: an in vitro study. J. Mater.
               23. Agarwal, S., Wendorff, J.H., and Greiner,  Sci., 41, 6453–6459.
                  A. (2008) Use of electrospinning tech-  34. Park, J.W. and Im, S.S. (2003) Mis-
                  nique for biomedical applications.  cibility and morphology in blends
                  Polymer, 49, 5603–5621.         of poly(L-lactic acid) and poly(vinyl
   250   251   252   253   254   255   256   257   258   259   260