Page 255 - Biodegradable Polyesters
P. 255
References 233
12. Evstatiev, M. and Fakirov, S. (1992) 24. Lederer, A., Harnisch, C., Bhattacharyya,
Microfibrillar reinforcement of polymer D., and Fakirov, S. (2010) Organic sol-
blends. Polymer, 33, 877–880. vent traces in fibrillar scaffolds for tissue
13. Evstatiev, M., Petrovich, S., and Fakirov, engineering. J. Biomimetics Biomater.
S. (1993) Microfibrillar reinforced com- Tissue Eng., 7,1–6.
posites from binary and ternary blends 25. Fakirov, S., Bhattacharyya, D., and
of polyesters and Nylon 6. Macro- Hutmacher, D. (2008) in Processing
molecules, 26, 5219–5226. and Fabrication of Advanced Materi-
14. Evstatiev, M., Nicolov, N., and Fakirov, als – XVII,vol. II (eds N. Bhatnagar
S. (1996) Morphology of microfibrillar and T.S. Srivatsan), I K International,
reinforced composites from polymer New Delhi, pp. 794–803.
blends. Polymer, 37, 4455–4463. 26. Bhattacharyya, D. and Fakirov, S. (2009)
15. Fakirov, S.,Evstatiev,M., andFriedrich, in Nano- and Micromechanics of Poly-
K. (2000) in Polymer Blends: Formula- mer Blends and Composites (eds J.
tion and Performance,vol. II (eds D.R. Karger-Kocsis and S. Fakirov), Hanser,
Paul and C.B. Bucknall), John Wiley & Munich, pp. 167–205.
Sons, Inc, New York, pp. 455–476. 27. Fakirov, S. (2006) Modified Soxh-
let apparatus for high temperature
16. Fakirov, S.,Evstatiev,M., andFriedrich,
extraction. J. Appl. Polym. Sci., 102,
K. (2002) in Handbook of Thermo-
2013–2014.
plastic Polyesters (ed S. Fakirov),
28. Kotek, R., Jung, D., Tonelli, A.E., and
Wiley-VCH Verlag GmbH, Weinhem,
Vasanthan, N. (2005) Novel methods
pp. 1093–1132.
17. Fakirov, S. and Bhattacharyya, D. (eds) for obtaining high modulus aliphatic
polyamide fibers. J. Macromol. Sci.
(2012) Synthetic Polymer-Polymer Com-
-Polym. Rev., C45 (3), 201–230.
posites, Hanser Publisher, Munich, 29. Kotek, R., Pang, K., Schmidt, B., and
(2012).
Tonelli, A.E. (2004) Synthesis and gas
18. Fakirov, S., Bhattacharyya, D., Lin, R.J.T.,
barrier characterization of poly(ethylene
Fuchs, C., and Friedrich, K. (2007) Con- isophthalate). J. Polym. Sci., Part B:
tribution of coalescence to microfibril
Polym. Phys., 42, 4247–4254.
formation in polymer blends during cold 30. Vasanthan, N., Kotek, R., Jung, D.W.,
drawing. J. Macromol. Sci. Part Phys.,
Shin, D., Tonelli, A.E., and Salem, D.R.
B46, 183–193.
(2004) Lewis acid-base complexation
19. Fakirov, S., Bhattacharyya, D., and
of polyamide 66 to control hydrogen
Shields, R.J. (2008) Nanofibril rein-
bonding, extensibility and crystallinity.
forced composites from polymer blends.
Polymer, 45, 4077–4085.
Colloids Surf., A, 313,2–8. 31. Kuo, S.W. (2008) Hydrogen-bonding
20. Fakirov, S. (2013) Nano- and microfibril- in polymer blends. J. Polym. Res., 15,
larsingle-polymercomposites: areview. 459–486.
Macromol. Mater. Eng., 298, 9–32. 32. Shui, X., He, Y., Asakawa, N., and Inoue,
21. Fakirov, S. (2013) Nano-/microfibrillar Y. (2001) Miscibility and phase structure
polymer-polymer and single polymer of binary blends of poly(L-lactide) and
composites: the converting instead of poly(vinyl alcohol). J. Appl. Polym. Sci.,
adding concept. Compos.Sci.Technol, 81, 762–772.
89, 211–225. 33. 33. Bini, T.B., Gao, S., Wang, S., and
22. Greiner, A. and Wendorff, J.H. (2007) Ramakrishna, S. (2006) Poly(l-lactide-co-
Electrospinning: a fascinating method glycolide) biodegradable microfibers and
for the preparation of ultrathin fibers. electrospun nanofibers for nerve tissue
Angew. Chem. Int. Ed., 46, 5670–5703. engineering: an in vitro study. J. Mater.
23. Agarwal, S., Wendorff, J.H., and Greiner, Sci., 41, 6453–6459.
A. (2008) Use of electrospinning tech- 34. Park, J.W. and Im, S.S. (2003) Mis-
nique for biomedical applications. cibility and morphology in blends
Polymer, 49, 5603–5621. of poly(L-lactic acid) and poly(vinyl