Page 9 - Biodegradable Polyesters
P. 9
Contents VII
4 Synthesis, Properties, and Mathematical Modeling of Biodegradable
Aliphatic Polyesters Based on 1,3-Propanediol and Dicarboxylic
Acids 73
Dimitris S. Achilias and Dimitrios N. Bikiaris
4.1 Introduction 73
4.1.1 Aliphatic Polyesters 73
4.1.2 Production of 1,3-Propanediol 75
4.2 Synthesis of Aliphatic Polyesters from 1,3-Propanediol and Aliphatic
Acids 78
4.3 Properties of Poly(propylene alkylenedicarboxylates) 80
4.4 Mathematical Modeling of the Synthesis of Aliphatic Polyesters 85
4.4.1 Brief History of Step Reaction Kinetic Modeling 85
4.4.2 Mathematical Modeling of the Esterification Reaction for the
Synthesis of Aliphatic Polyesters 87
4.4.2.1 Literature Survey 87
4.4.2.2 Modeling Approaches 88
4.4.2.3 Modeling Using the Functional Group Approach 88
4.4.2.4 Modeling Using an Overall Reaction Model 97
4.4.2.5 Modeling the Effect of Silica Nanoparticles on the Esterification
Reaction 98
4.4.3 Modeling the Polycondensation Reaction Kinetics for the Synthesis
of Aliphatic Polyesters 100
4.4.3.1 Reaction Scheme 100
4.4.3.2 Development of the Mathematical Model 101
4.4.3.3 Simulation Model Results 102
4.5 Conclusions 105
References 106
5 Crystallization of Poly(lactic acid) 109
Maria Laura Di Lorenzo and René Androsch
5.1 Introduction 109
5.2 Crystal Polymorphism in Poly(L-lactic acid) 111
5.3 Kinetics of Crystal Nucleation 114
5.4 Crystal Growth Rate 119
5.5 Influence of Comonomer Content 122
5.6 Stereocomplex Crystals of Poly(L-lactide)/Poly(D-lactide) 123
5.7 Conclusions 125
References 125
6 Shape Memory Systems with Biodegradable Polyesters 131
József Karger Kocsis and Suchart Siengchin
6.1 Introduction 131
6.2 Shape Memory Polymer Systems 133
6.2.1 Homopolymers and Composites 134
6.2.1.1 Linear 134