Page 121 - Biofuels Refining and Performance
P. 121
104 Chapter Three
38. W. H. Kampen, Todaro CL. Nutritional requirements in fermentation processes,
In: Fermentation and Biochemical Engineering Handbook, Second ed., Noyes
Publications, 1997.
39. M. J. Taherzadeh, L. Adler, and G. Lidén. Strategies for enhancing fermentative pro-
duction of glycerol—A review, Enzyme and Microbial Technology 31, 53–66, 2002.
40. R. Millati. Ethanol production from lignocellulosic materials, Chemical Reaction
Engineering, Chalmers University of Technology, Göteborg, Sweden, 2005.
41. H. Schneider. Conversion of pentoses to ethanol by yeast and fungi, Critical Reviews
in Biotechnology 9, 1–40 1989.
42. K. Karhumaa, R. Fromanger, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. High
activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation
by recombinant Saccharomyces cerevisiae, Applied Microbiology and Biotechnology 73,
1039–1046, 2006.
43. M. Jeppsson, K. Traff, B. Johansson, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund.
Effect of enhanced xylose reductase activity on xylose consumption and product dis-
tribution in xylose-fermenting recombinant Saccharomyces cerevisiae, FEMS Yeast
Research 3, 167–175, 2003.
44. Y. C. Bor, C. Moraes, S. P. Lee, W. L. Crosby, A. J. Sinskey, and C. A. Batt. Cloning
and sequencing the Lactobacillus brevis gene encoding xylose isomerase, Gene 114,
127–132, 1992.
45. X. Zhu, M. Teng, L. Niu, C. Xu, and Y. Wang. Structure of xylose isomerase from
Streptomyces diastaticus No. 7 strain M1033 at 1.85 Å resolution, Acta
Crystallographica. Section D, Biological Crystallography 56, 129–136, 2000.
46. Y. Wang, Z. Huang, X. Dai, J. Liu, T. Cui, L. Niu, C. Wang, and X. Xu. The sequence
of xylose isomerase gene from Streptomyces diastaticus No. 7 M1033, Clinical Journal
of Biotechnology 10, 97–103, 1994.
47. B. L. Maiorella. Ethanol, In: Comprehensive Biotechnology, Moo-Young, M. (Ed.),
First ed., Oxford: Pergamon Press Ltd., 1985.
48. S. Govindaswamy and L. M. Vane. Kinetics of growth and ethanol production on dif-
ferent carbon substrates using genetically engineered xylose-fermenting yeast,
Bioresource Technology 98, 677–685, 2007.
49. C. Martin, M. Marcet, O. Almazan, and L. J. Jonsson. Adaptation of a recombinant
xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate
with high content of fermentation inhibitors, Bioresource Technology 98, 1767–1773,
2006.
50. L. Ruohonen, A. Aristidou, A. D. Frey, M. Penttila, and P. T. Kallio. Expression of
Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast
Saccharomyces cerevisiae under low oxygen conditions, Enzyme and Microbial
Technology 39, 6–14, 2006.
51. N. Ho, Z. Chen, and A. Brainard. Genetically engineered Saccharomyces yeast capa-
ble of effective cofermentation of glucose and xylose, Applied Environmental
Microbiology 64, 1852–1859, 1998.
52. M. H. Toivari, A. Aristidou, L. Ruohonen, and M. Penttila. Conversion of xylose to
ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1)
and oxygen availability, Metabolic Engineering 3, 236–249, 2001.
53. T. W. Jeffries and C. P. Kurtzman. Strain selection, taxonomy, and genetics of xylose-
fermenting yeasts, Enzyme and Microbial Technology 16, 922–932, 1994.
54. D. D. Spindler, C. E. Wyman, K. Grohmann, and G. P. Philippidis. Evaluation of the
cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharifi-
cation and fermentation of cellulose, Biotechnology Letters 14, 403–407, 1992.
55. J. Szczodrak and Z. Targonski. Selection of thermotolerant yeast strains for simul-
taneous saccharification and fermentation of cellulose, Biotechnology and
Bioengineering 31, 300–303, 1988.
56. M. Ballesteros, J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. Ethanol
from lignocellulosic materials by a simultaneous saccharification and fermentation
process (SSF) with Kluyveromyces marxianus CECT 10875, Process Biochemistry 39,
1843–1848, 2004.
57. I. S. Horvath. Fermentation inhibitors in the production of bio-ethanol, Chemical
Reaction Engineering, Chalmers University of Technology, Göteborg, Sweden, 2004.