Page 120 - Biofuels Refining and Performance
P. 120

Bioethanol: Market and Production Processes  103


           19. M. J. Taherzadeh, C. Niklasson, and G. Lidén. Acetic acid—Friend or foe in anaero-
              bic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chemical
              Engineering Science 52, 2653–2659, 1997.
           20. L. Olsson and B. Hahn-Hägerdal. Fermentation of lignocellulosic hydrolysates for
              ethanol production, Enzyme and Microbial Technology 18, 312–331, 1996.
           21. E. Palmqvist and B. Hahn-Hägerdal. Fermentation of lignocellulosic hydrolysates. I:
              Inhibition and detoxification, Bioresource Technology 74, 17–24, 2000.
           22. P. Persson, J. Andersson, L. Gorton, S. Larsson, N. O. Nilvebrant, and L. J. Jonsson.
              Effect of different forms of alkali treatment on specific fermentation inhibitors and
              on the fermentability of lignocellulose hydrolysates for production of fuel ethanol,
              Journal of Agricultural and Food Chemistry 50, 5318–5325, 2002.
           23. R. Millati, C. Niklasson, and M. J. Taherzadeh. Effect of pH, time and temperature
              of overliming on detoxification of dilute-acid hydrolyzates for fermentation by
              Saccharomyces cerevisiae, Process Biochemistry 38, 515–522, 2002.
           24. A. Martinez, M. E. Rodriguez, M. L. Wells, S. W. York, J. F. Preston, and L. O. Ingram.
              Detoxification of dilute acid hydrolysates of lignocellulose with lime, Biotechnology
              Progress 17, 287–293, 2001.
           25. S. Amartey and T. Jeffries. An improvement in Pichia stipitis fermentation of acid-
              hydrolysed hemicellulose achieved by overliming (calcium hydroxide treatment) and
              strain adaptation, World Journal of Microbiology & Biotechnology 12, 281–283, 1996.
           26. R. Purwadi, C. Niklasson, and M. J. Taherzadeh. Kinetic study of detoxification of
              dilute-acid hydrolyzates by Ca(OH) 2 , Journal of Biotechnology 114, 187–198, 2004.
           27. G. P. Philippidis and T. K. Smith. Limiting factors in the simultaneous saccharifica-
              tion and fermentation process for conversion of cellulosic biomass to fuel ethanol,
              Applied Biochemistry and Biotechnology, 51/52, 117–124, 1995.
           28. K. Stenberg, M. Bollok, K. Reczey, M. Galbe, and G. Zacchi. Effect of substrate and
              cellulase concentration on simultaneous saccharification and fermentation of steam-
              pretreated softwood for ethanol production, Biotechnology and Bioengineering 68,
              204–210, 2000.
           29. M. Linde, M. Galbe, and G. Zacchi. Simultaneous saccharification and fermentation
              of steam-pretreated barley straw at low enzyme loadings and low yeast concentration,
              Enzyme and Microbial Technology 40, 1100–1107, 2007.
           30. M. Alkasrawi, T. Eriksson, J. Borjesson, A. Wingren, M. Galbe, F. Tjerneld, G. Zacchi.
              The effect of Tween-20 on simultaneous saccharification and fermentation of softwood
              to ethanol, Enzyme and Microbial Technology 33, 71–78, 2003.
           31. T. Brandberg. Fermentation of undetoxified dilute acid lignocellulose hydrolyzate for
              fuel ethanol production, Chemical Reaction Engineering, Chalmers University of
              Technology, Göteborg, Sweden, 2005.
           32. M. Sonderegger, M. Jeppsson, C. Larsson, M. F. Gorwa-Grauslund, E. Boles,
              L. Olsson et al. Fermentation performance of engineered and evolved xylose-
              fermenting Saccharomyces cerevisiae strains, Biotechnology and Bioengineering
              87, 90–98, 2004.
           33. T. W. Jeffries. Engineering yeasts for xylose metabolism,  Current Opinion in
              Biotechnology 17, 320–326, 2006.
           34. A. J. van Maris, D. A. Abbott, E. Bellissimi, J. van den Brink, M. Kuyper, M. A. Luttik
              et al.  Alcoholic fermentation of carbon sources in biomass hydrolysates by
              Saccharomyces cerevisiae: Current status, Antonie Van Leeuwenhoek 90, 391–418,
              2006.
           35. M. Jeppsson, B. Johansson, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. Reduced
              oxidative pentose phosphate pathway flux in recombinant xylose-utilizing
              Saccharomyces cerevisiae strains improves the ethanol yield from xylose, Applied
              and Environmental Microbiology 68, 1604–1609, 2002.
           36. M. Desvaux, E. Guedon, and H. Petitdemange. Cellulose catabolism by Clostridium
              cellulolyticum growing in batch culture on defined medium,  Applied and
              Environmental Microbiology, 66, 2461–2470, 2000.
           37. I. S. Horváth, M. J. Taherzadeh, C. Niklasson, and G. Lidén. Effects of furfural on
              anaerobic continuous cultivation of Saccharomyces cerevisiae, Biotechnology and
              Bioengineering 75, 540–549, 2001.
   115   116   117   118   119   120   121   122   123   124   125