Page 177 - Biofuels for a More Sustainable Future
P. 177
Life cycle sustainability assessment in the energy sector 161
ICCT, 2014. Comprehensive Carbon Accounting for Identification of Sustainable Biomass
Feedstocks. International Council on Clean Transportation, Washington.
IEA, 2010. Technology Roadmap: Solar Photovoltaic Energy. International Energy Agency,
Paris.
IEA, 2013. Technology Roadmap: Wind Energy. International Energy Agency, Paris.
IEA, 2018. World Energy Balances 2018. Last Retrieved October 2018, from, https://www.
iea.org/statistics.
IEA and NEA, 2015. Projected Costs of Generating Electricity, 2015 ed. OECD Publica-
tions, Paris.
Iofrida, N., De Luca, A.I., Strano, A., Gulisano, G., 2018. Can social research paradigms jus-
tify the diversity of approaches to social life cycle assessment? Int. J. Life Cycle Assess.
23 (3), 464–480.
IPCC, 2014. Climate change 2014: synthesis report. In: Pachauri, R.K., Meyer, L.A.
(Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. Climate Change 2014. IPCC,
Geneva.
IRENA, 2018. Renewable Energy and Jobs: Annual Review 2018. International Renewable
Energy Agency, Masdar City.
ISO, 2006a. ISO 14040:2006: Environmental Management—Life Cycle Assessment—
Principles and Framework. International Organisation for Standardisation, Geneva.
ISO, 2006b. ISO 14044:2006: Environmental Management—Life Cycle Assessment—
Requirements and Guidelines. International Organisation for Standardisation, Geneva.
ISO, 2013a. ISO 13065:2015: Sustainability Criteria for Bioenergy. International Organisa-
tion for Standardisation, Geneva.
ISO, 2013b. ISO/TS 14067:2013: Greenhouse Gases—Carbon Footprint of Products—
Requirements and Guidelines for Quantification and Communication. International
Organisation for Standardisation, Geneva.
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R.,
2003. IMPACT 2002+: a new life cycle impact assessment methodology. Int. J. Life
Cycle Assess. 8 (6), 324–330.
Krook, J., Ma ˚rtensson, A., Eklund, M., 2004. Metal contamination in recovered waste wood
used as energy source in Sweden. Resour. Conserv. Recycl. 41 (1), 1–14.
K€uhnen, M., Hahn, R., 2017. Indicators in social life cycle assessment: a review of frame-
works, theories, and empirical experience. J. Ind. Ecol. 21 (6), 1547–1565.
McDonald, A., Schrattenholzer, L., 2001. Learning rates for energy technologies. Energy
Policy 29 (4), 255–261.
National Renewable Energy Laboratory, 2012. US Life Cycle Inventory Database.
Retrieved 2012, from US Department of Energy, https://www.nrel.gov/lci/.
Obernberger, I., Brunner, T., B€arnthaler, G., 2006. Chemical properties of solid biofuels—
significance and impact. Biomass Bioenergy 30 (11), 973–982.
€ Oko-Institut, 2012. GEMIS: Global Emission Model for Integrated Systems v4.71. € Oko-
Institut (Institute for Applied Ecology), Darmstadt.
PE International, 2008. GaBi 4. Echterdingen, PE International, Stuttgart.
Peterson, H., 2009. Transformational supply chains and the ‘wicked problem’ of sustainabil-
ity: aligning knowledge, innovation, entrepreneurship, and leadership. J. Chain Netw.
Sci. 9 (2), 71–82.
P€oyry, 2011. Pellets—Becoming a Global Commodity? P€oyry Management Consulting,
London.
Prox, M., 2018. Life Cycle Impact Assessment—Which Are the LCIA Indicator Sets Most
Widely Used by Practitioners? Last Retrieved October 2018, from, https://www.
ipoint-systems.com/blog/lcia-indicator/.