Page 287 - Biofuels for a More Sustainable Future
P. 287

252   Biofuels for a More Sustainable Future


          assessment (LCSA). As the LCC expands from the financial LCC (fLCC) to
          the environmental LCC (eLCC) to the social LCC (sLCC), the system
          boundary expands and starts including activities whose financial equivalents
          are increasingly uncertain. The Design-of-experiments (DOE) approach to
          Global Sensitivity Analysis (GSA) provides a simple procedure to systemat-
          ically determine the sensitivity of the LCC to key parameters, while taking
          into account potential interactions. By doing so, a more intuitive grasp of the
          relative importance of each of the parameters is provided to decision-
          makers. This approach has been applied here to the case of biodiesel produc-
          tion in Vietnam, but can be readily generalized to a wide range of LCC
          applications as well.



          References
          Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B., Kraft, M., 2014. The
             future viability of algae-derived biodiesel under economic and technical uncertainties.
             Bioresour. Technol. 151, 166–173. https://doi.org/10.1016/j.biortech.2013.10.062.
          Brundtland, G.H., 1987. Our Common Future. The Brundtland Report. Oxford University
             Press, https://doi.org/10.1080/07488008808408783.
          Chan, Y.H., Tan, R.R., Yusup, S., Quitain, A.T., Loh, S.K., Uemura, Y., 2018. Life cycle
             assessment (LCA) of production and fractionation of bio-oil derived from palm kernel
             shell: a gate-to-gate case study. Process Integr. Optim. Sustain. 2, 343–351. https://
             doi.org/10.1007/s41660-018-0052-3.
          Chevalier, J.-L., Le T eno, J.-F., 1996. Life cycle analysis with ill-defined data and its appli-
             cation to building products. Int. J. Life Cycle Assess. 1, 90–96. https://doi.org/10.1007/
             BF02978652.
          Ciroth, A., Fleischer, G., Steinbach, J., 2004. Uncertainty calculation in life cycle assess-
             ments. Int. J. Life Cycle Assess. 9, 216–226. https://doi.org/10.1007/BF02978597.
          Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B.,
             et al., 2003. The nitrogen cascade. Bioscience 53, 341. https://doi.org/10.1641/0006-
             3568(2003)053[0341:TNC]2.0.CO;2.
          Giunta, A., Wojtkiewicz, S., Eldred, M., 2003. Overview of modern design of experiments
             methods for computational simulations (invited). In: 41st Aerospace Sciences Meeting
             and Exhibit. American Institute of Aeronautics and Astronautics, Reston, VA.
             https://doi.org/10.2514/6.2003-649.
          Global Petrol Prices, 2015. Vietnam Diesel Price. http://www.globalpetrolprices.com/
             (Accessed 15 December 2015).
          Heijungs, R., 1996. Identification of key issues for further investigation in improving the
             reliability of life-cycle assessments. J. Clean. Prod. 4, 159–166. https://doi.org/
             10.1016/S0959-6526(96)00042-X.
          Heijungs, R., 2010. Sensitivity coefficients for matrix-based LCA. Int. J. Life Cycle Assess.
             15, 511–520. https://doi.org/10.1007/s11367-010-0158-5.
          Heijungs, R., Suh, S., 2002. The Computational Structure of Life Cycle Assessment. Kluwer
             Academic Publishers, Dordrecht.
          Heijungs, R., Settanni, E., Guin ee, J., 2013. Toward a computational structure for life cycle
             sustainability analysis: unifying LCA and LCC. Int. J. Life Cycle Assess. 18, 1722–1733.
             https://doi.org/10.1007/s11367-012-0461-4.
   282   283   284   285   286   287   288   289   290   291   292