Page 304 - Biofuels for a More Sustainable Future
P. 304
Social life cycle assessment of biofuel production 269
De-Burgos-Jim enez, J., Vazquez-Brust, D.A., Plaza-U ´ beda, J.A., 2011. Adaptability, entre-
preneurship and stakeholder integration: scenarios and strategies for environment and
vulnerability. J. Environ. Prot.. 3 (10), 1375–1387. https://doi.org/10.4236/
jep.2011.210160.
Di Cesare, S., Silveri, F., Sala, S., Petti, L., 2018. Positive impacts in social life cycle assess-
ment: state of the art and the way forward. Int. J. Life Cycle Assess. 23 (3), 406–421.
https://doi.org/10.1007/s11367-016-1169-7.
Donaldson, T., Preston, L.E., 1995. The stakeholder theory of the corporation: concepts,
evidence and implications. Acad. Manag. Rev. 20 (1), 65–91. https://doi.org/
10.5465/amr.1995.9503271992.
Dreyer, L.C., Hauschild, M.Z., Schierbeck, J., 2006. A framework for social life cycle impact
assessment. Int. J. Life Cycle Assess. 11 (2), 88–97. https://doi.org/10.1065/
lca2005.08.223.
Ekener, E., Hansson, J., Gustavsson, M., 2018a. Addressing positive impacts in social LCA—
discussing current and new approaches exemplified by the case of vehicle fuels. Int. J. Life
Cycle Assess. 23 (3), 556–568. https://doi.org/10.1007/s11367-016-1058-0.
Ekener, E., Hansson, J., Larsson, A., Peck, P., 2018b. Developing life cycle sustainability
assessment methodology by applying values-based sustainability weighting—tested on
biomass based and fossil transportation fuels. J. Clean. Prod. 181, 337–351. https://
doi.org/10.1016/j.jclepro.2018.01.211.
Ekener-Petersen, E., H€oglund, J., Finnveden, G., 2014. Screening potential social impacts of
fossil fuels and biofuels for vehicles. Energy Policy 73, 416–426. https://doi.org/
10.1016/j.enpol.2014.05.034.
Freeman, R.E., 1984. Strategic Management: A Stakeholder Approach. Pitman Publishing,
Boston, MA. 60 p.
Gonzalez-Salazar, M.A., Venturini, M., Poganietz, W.R., Finkenrath, M., Kirsten, T.,
Acevedo, H., Spina, P.R., 2016. Development of a technology roadmap for bioenergy
exploitation including biofuels, waste-to-energy and power generation & CHP. Appl.
Energy 180, 338–352. https://doi.org/10.1016/j.apenergy.2016.07.120.
Iofrida, N., De Luca, A.N., Strano, A., Gulisano, G., 2016. Can social research paradigms
justify the diversity of approaches to social life cycle assessment? Int. J. Life Cycle Assess.
23 (3), 464–480. https://doi.org/10.1007/s11367-016-1206-6.
Khoshnevisan, B., Rafiee, S., Tabatabaei, M., Ghanavati, H., Mohtasebi, S.S., Rahimi, V.,
Shafiei, M., Karimi, A.I., K., 2018. Life cycle assessment of castor-based biorefinery: a
well to wheel LCA. Int. J. Life Cycle Assess. 23 (9), 1788–1805. https://doi.org/
10.1007/s11367-017-1383-y.
Kl€oepffer, W., 2008. Life cycle sustainability assessment of products. (with comments by HA
Udo de Haes) Int. J. Life Cycle Assess. 13 (2), 89–95. https://doi.org/10.1065/
lca2008.02.376.
Lehmann, A., Russi, D., Bala, A., Finkbeiner, M., Fullana-I-Palmer, P., 2011. Integration of
social aspects in decision support, based on life cycle thinking. Sustainability 3 (4),
562–577. https://doi.org/10.3390/su3040562.
Macombe, C., Leskinen, P., Feschet, P., Antikainen, R., 2013. Social life cycle assessment of
biodiesel production at three levels: a literature review and development needs. J. Clean.
Prod. 52, 205–216. https://doi.org/10.1016/j.jclepro.2013.03.026.
Mattioda, R.A., Mazzi, A., Canciglieri Junior, O., Scipioni, A., 2015. Determining the prin-
cipal references of the social life cycle assessment of products. Int. J. Life Cycle Assess.
20 (8), 1155–1165. https://doi.org/10.1007/s11367-015-0873-z.
Mattioda, R.A., Fernandes, P.T., Casela, J.L., Canciglieri Junior, O., 2017. Social life cycle
assessment of hydrogen energy technologies. In: Hydrogen Economy: Supply Chain,
Life Cycle Analysis and Energy Transition for Sustainability, pp. 171–188.
(Chapter 7). https://www.elsevier.com/books/hydrogen-economy/scipioni/978-0-
12-811132-1.