Page 378 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 378

BIOMEDICAL COMPOSITES  355

                          6. R. Christensen, Mechanics of Composite Materials. New York: Wiley, 1979.
                          7. B. D. Ratner, Biomaterials Science: An Introduction to Materials in Medicine. San Diego: Academic Press,
                            1996.
                          8. J. Katz, “Orthopedic applications,” in Biomaterials Science, B. D. Ratner (ed.). San Diego: Academic Press,
                            1966, pp. 335–346.
                          9. H. Yildiz, S. K. Ha, and F. K. Chang, “Composite hip prosthesis design: 1. Analysis,” Journal of Biomedical
                            Materials Research 39:92–101 (1998).
                          10. J. Kettunen, E. A. Makelaa, H. Miettinen, et al., “Mechanical properties and strength retention of carbon
                            fiber-reinforced liquid crystalline polymer (LCP/CF) composite:  An experimental study on rabbits,”
                            Biomaterials 19:1219–1228 (1998).
                          11. R. De Santis, L. Ambrosio, and L. Nicolais, “Polymer-based composite hip prostheses,” Journal of Inorganic
                            Biochemistry 79:97–102 (2000).
                          12. S. Srinivasan, J. R. de Andrade, S. B. Biggers, Jr., and R. A. Latour, Jr., “Structural response and relative
                            strength of a laminated composite hip prosthesis: effects of functional activity,” Biomaterials 21:1929–1940
                            (2000).
                          13. L. Bacakova, V. Start, O. Kofronova, and V. Lisa, “Polishing and coating carbon fiber-reinforced carbon
                            composites with a carbon-titanium layer enhances adhesion and growth of osteoblastlike MG63 cells and
                            vascular smooth muscle cells in vitro,” Journal of Biomedical Materials Research 54:567–578 (2001).
                          14. W. S. Pietrzak, “Principles of development and use of absorbable internal fixation,”  Tissue Engineering
                            6:425–433 (2000).
                          15. H. Alexander, “Composites,” in Biomaterials Science, B. D. Ratner (ed.). San Diego: Academic Press, 1996,
                            pp. 94–105.
                          16. M. Dauner, H. Planck, L. Caramaro, et al., “Resorbable continuous-fiber reinforced polymers for osteosyn-
                            thesis,” Journal of Materials Science: Materials in Medicine 9:173–179 (1998).
                          17. A. Kelly, R. W. Cahn, and M. B. Bever, Concise Encyclopedia of Composite Materials, Revised Edition.
                            New York: Pergamon Press, 1994.
                          18. W. D. Cook, M. Forrest, and A. A. Goodwin, “A simple method for the measurement of polymerization
                            shrinkage in dental composites,” Dental Materials 15:447–449 (1999).
                          19. M. W. Beatty, M. L. Swartz, B. K. Moore, et al., “Effect of microfiller fraction and silane treatment on resin
                            composite properties,” Journal of Biomedical Materials Research 40:12–23 (1998).
                          20. J. W. Nicholson, “Adhesive dental materials: A review,” International Journal of Adhesion and Adhesives
                            18:229–236 (1998).
                          21. W. D. Wolf, K. J. Vaidya, and L. Falter Francis, “Mechanical properties and failure analysis of alumina-glass
                            dental composites,” Journal of the American Ceramic Society 79:1769–1776 (1996).
                          22. D. J. Kim, M. H. Lee, and C. E. Kim, “Mechanical properties of tape-cast alumina-glass dental composites,”
                            Journal of the American Ceramic Society 82:3167–3172 (1999).
                          23. L. F. Francis, K. J. Vaidya, H. Y. Huang, and W. D. Wolf, “Design and processing of ceramic-based analogs
                            to the dental crown,” Materials Science and Engineering [C] 3:63–74 (1995).
                          24. R. P. Kusy, “A review of contemporary archwires: Their properties and characteristics,” Angle Orthodontist
                            67:197–207 (1997).
                          25. D.  W. Fallis and R. P. Kusy, “Variation in flexural properties of photo-pultruded composite archwires:
                            Analyses of round and rectangular profiles,”  Journal of Materials Science: Materials in Medicine
                            11:683–693 (2000).
                          26. M. Wang, C. Berry, M. Braden, and W. Bonfield, “Young’s and shear moduli of ceramic particle filled
                             polyethylene,” Journal of Materials Science: Materials in Medicine 9:621–624 (1998).
                          27. R. Hanak and E. S. Hoffman, “Specification and fabrication details for the ISNY above-knee socket system,”
                            Orthotics and Prosthetics 40:38–42 (1986).
                          28. B. Seal and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Materials Science and
                            Engineering [R] 262:1–84 (2001).
                          29. J. M. Lohr, K. V. James, A. T. Hearn, and S. A. Ogden, “Lessons learned from the DIASTAT vascular access
                            graft,” American Journal of Surgery 172:205–209 (1996).
   373   374   375   376   377   378   379   380   381   382   383