Page 391 - Biomedical Engineering and Design Handbook Volume 2, Applications
P. 391

BREAST IMAGING SYSTEMS: DESIGN CHALLENGES FOR ENGINEERS  369

                          Dash, N., Lupetin, A., and Daffner, R. (1986). Magnetic resonance imaging in the diagnosis of breast disease.
                            AJR American Journal of Roentgenology. 146, 119–125.
                          Dobbins, J.T. and Godfrey, D.J. (2003). Digital x-ray tomosynthesis: current state of the art and clinical poten-
                            tial. [Review] [110 refs]. Physics in Medicine & Biology. 48, R65–106.
                          Doshi, N.K., Shao, Y., Silverman, R.W., and Cherry, S.R. (2000). Design and evaluation of an LSO PET detector
                            for breast cancer imaging. Medical Physics. 2000. 27(7), 1535–1543.
                          Doshi, N.K., Silverman, R.W., Shao, Y., and Cherry, S.R. (2001). maxPET, a dedicated mammary and axillary
                            region PET imaging system for breast cancer. IEEE Transactions on Nuclear Science., IEEE Transactions on
                            48, 811–815.
                          El Yousef, S., Duchesneau, R., and Alfidi, R. (1984). Magnetic resonance imaging of the breast. Radiology. 150,
                            761–766.
                          Esserman, L., Hylton, N., George, T., and Weidner, N. (1999). Contrast-enhanced magnetic resonance imaging
                            to assess tumor histopathology and angiogenesis in breast carcinoma. The Breast Journal. 5, 13–21.
                          Eubank, W.B. (2007). Diagnosis of recurrent and metastatic disease using f-18 fluorodeoxyglucose-positron emis-
                            sion tomography in breast cancer. [Review] [64 refs]. Radiologic Clinics of North America. 45, 659–667.
                          Gilles, R., Guinebretiere, J., Lucidarme, O., et al. (1994). Nonpalpable breast tumors: diagnosis with contrast-
                            enhanced subtraction dynamic MRI imaging. Radiology. 191, 625–631.
                          Godfrey, D.J., McAdams, H.P., and Dobbins, J.T. (2006). Optimization of the matrix inversion tomosynthesis
                            (MITS) impulse response and modulation transfer function characteristics for chest imaging.  Medical
                            Physics. 33, 655–667.
                          Godfrey, D.J., Ren, L., Yan, H., Wu, Q., Yoo, S., Oldham, M., and Yin, F.F. (2007). Evaluation of three types of
                            reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS).
                            Medical Physics. 34, 3374–3384.
                          Gondek, G., Li, T., Lynch, R.J.M., and Dewhurst, R.J. (2006). Decay of photoacoustic signals from biological
                            tissue irradiated by near infrared laser pulses. Journal of Biomedical Optics. 11, 054036–054Oct.
                          Harms, S., Flaming, D., Hesley, K.L., et al. (1993). MRI imaging of the breast with rotating delivery of excita-
                            tion off resonance. Radiology. 187, 493–501.
                          Heywang, S., Wolf, A., and Pruss, E. (1989). MRI imaging of the breast with Gd-DTPA: use and limitations.
                            Radiology. 171, 95–103.
                          Hickman, P., Moore, N., and Shepstone, B. (1994). The indeterminate breast mass: assessment using contrast
                            enhanced magnetic resonance imaging. The British Journal of Radiology. 67, 14–20.
                          Hruska, C.B. and O’Connor, M.K. (2006). Effect of collimator selection on tumor detection for dedicated nuclear
                            breast imaging systems. IEEE Transactions on Nuclear Science., IEEE Transactions on 53, 2680–2689.
                          Huesman, R.H., Klein, G.J., Moses, W.W., Jinyi, Q., Reutter, B.W., and Virador, P.R.G. (2000). List-mode
                            maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling.
                            IEEE Transactions on Medical Imaging., IEEE Transactions on 19, 532–537.
                          Hussain, R., Buscombe, J.R., Hussain, R., and Buscombe, J.R. (2006). A meta-analysis of scintimammography:
                            an evidence-based approach to its clinical utility. [Review] [42 refs]. Nuclear Medicine Communications. 27,
                            589–594.
                          Hylton, N. (1999). Vascularity assessment of breast lesions with gadolinium-enhanced MR imaging. MRI Clinics
                            of North America. 7, 411–420.
                          Imbriaco, M., Del Vecchio, S., Riccardi, A., Pace, L., Di Salle, F., Di Gennaro, F., Salvatore, M., and Sodano,
                            A. (2001). Scintimammography with 99mTc-MIBI versus dynamic MRI for non-invasive characterization of
                            breast masses. European Journal of Nuclear Medicine. 28(1), 56–63.
                          Jin, Z., Foudray, A.M.K., Olcott, P.D., Farrell, R., Shah, K., and Levin, C.S. (2007). Performance characterization
                            of a novel thin position-sensitive avalanche photodiode for 1 mm resolution positron emission tomography.
                            IEEE Transactions on Nuclear Science., IEEE Transactions on 54, 415–421.
                          Jinyi, Q., Kuo, C., Huesman, R.H., Klein, G.J., Moses, W.W., and Reutter, B.W. (2002). Comparison of rectan-
                            gular and dual-planar positron emission mammography scanners. IEEE Transactions on Nuclear Science.,
                            IEEE Transactions on 49, 2089–2096.
                          Johns, P.C. and Yaffe, M.J. (1987). X-ray characterization of normal and neoplastic breast tissue. Physics in
                            Medicine & Biology. 32, 675–695.
                          Jossinet, J. (1996). Variability of impedivity in normal and pathological breast tissue.  Medical & Biological
                            Engineering & Computing. 34, 346–350.
   386   387   388   389   390   391   392   393   394   395   396