Page 392 - Biomedical Engineering and Design Handbook Volume 2, Applications
P. 392

370  DIAGNOSTIC EQUIPMENT DESIGN

                       Kaiser, W. and Zeitler, E. (1989). MRI imaging of the breast: fast imaging sequences with and without Gd-DTPA.
                         Radiology. 170, 681–686.
                       Kerlikowske, K., Grady, D., Barclay, J., Sickles, E., Eaton, A., and Ernster, V. (1993). Positive predictive value
                         of screening mammography by age and family history of breast cancer.  Journal of  American Medical
                         Association. 270, 2444–2450.
                       Kim, G., Huang, S.W., Day, K.C., O’Donnell, M., Agayan, R.R., Day, M.A., Kopelman, R., and Ashkenazi, S.
                         (2007). Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. Journal of
                         Biomedical Optics. 12, 044020–044Aug.
                       Kitaoka, F., Sakai, H., Kuroda, Y., Kurata, S., Nakayasu, K., Hongo, H., Iwata, T., and Kanematsu, T. (2001).
                         Internal echo histogram examination has a role in distinguishing malignant tumors from benign masses in
                         the breast. Clinical Imaging. 25, 151–153.
                       Kopans, D.B. (1992). The positive predictive value of mammography. American Journal of Roentgenology. 158,
                         521–526.
                       Kriege, M., Brekelmans, C.T., Boetes, C., et al. (2004). Efficacy of MRI and mammography for breast cancer
                         screening in women with a familial or genetic predisposition.  New England Journal of Medicine. 351,
                         427–437.
                       Krouskop, T., Wheeler, T., Kallel, F., Garra, B., and Hall, T. (1998). Elastic moduli of breast and prostate tissues
                         under compression. Ultrasonic Imaging. 20, 260–274.
                       Ku, G., Fornage, B.D., Jin, X., Xu, M., Hunt, K.K., and Wang, L.V. (2005). Thermoacoustic and photoacoustic
                         tomography of thick biological tissues toward breast imaging. Technology in Cancer Research & Treatment.
                         4, 559–566.
                       Ku, G. and Wang, L.V. (2005). Deeply penetrating photoacoustic tomography in biological tissues enhanced with
                         an optical contrast agent. Optics Letters. 30, 507–509.
                       Kuhl, C.S., Schrading, S., Leutner, C.C., et al. (2005). Mammography, breast ultrasound and magnetic resonance
                         imaging for surveillance of women at high familial risk for breast cancer. Journal of Clinical Oncology. 23,
                         8469–8476.
                       Kwan, A.L.C., Boone, J.M., Yang, K., and Huang, S.Y. (2007). Evaluation of the spatial resolution characteristics
                         of a cone-beam breast CT scanner. Medical Physics. 34, 275–281.
                       Leach, M.O., Boggis, C.R., Dixon, A.K., et al. (2005). Screening with magnetic resonance imaging and
                         mammography of a UK population with high familial risk of breast cancer: a prospective multicentre cohort
                         study (MARIBS). Lancet. 365, 1769–1778.
                       Lehman, C.D., Blume, J.D., Weatherall, P., et al. (2005). Screening women at high risk for breast cancer with
                         mammography and magnetic resonance imaging. Cancer. 103, 1898–1905.
                       Lumachi, F., Ferretti, G., Povolato, M., Marzola, M.C., Zucchetta, P., Geatti, O., Bui, F., and Brandes, A.A.
                         (2001). Sestamibi scintimammography in pT1 breast cancer: alternative or complementary to X-ray mam-
                         mography? Anticancer Research. 21, 2201–2205.
                       Mainprize, J.G., Bloomquist, A.K., Kempston, M.P., Yaffe, M.J., Mainprize, J.G., Bloomquist, A.K., Kempston,
                         M.P., and Yaffe, M.J. (2006). Resolution at oblique incidence angles of a flat panel imager for breast
                         tomosynthesis. Medical Physics. 33, 3159–3164.
                       Majewski, S., Kieper, D., Curran, E., et al. (2001). Optimization of dedicated scintimammography procedure
                         using detector prototypes and compressible phantoms. IEEE Transactions on Nuclear Science. 3, 822–829.
                       Malich, A., Boehm,  T., Facius, M., Freesmeyer, M.G., Fleck, M., Anderson, R., and Kaiser, W.A. (2001a).
                         Differentiation of mammographically suspicious lesions: evaluation of breast ultrasound, MRI mammography
                         and electrical impedance scanning as adjunctive technologies in breast cancer detection. Clinical Radiology.
                         56, 278–283.
                       Malich,  A., Bohm,  T., Facius, M., Freessmeyer, M., Fleck, M.,  Anderson, R., and Kaiser,  W.A. (2001b).
                         Additional value of electrical impedance scanning: experience of 240 histologically-proven breast lesions.
                         European Journal of Cancer. 37, 2324–2330.
                       Malich, A., Facius, M., Anderson, R., Bottcher, J., Sauner, D., Hansch, A., Marx, C., Petrovitch, A., Pfleiderer,
                         S., and Kaiser,  W. (2003). Influence of size and depth on accuracy of electrical impedance scanning.
                         European Radiology. 13, 2441–2446.
                       Malich,  A. and Fuchsjager, M. (2003). Electrical impedance scanning in classifying suspicious breast
                         lesions.[comment]. Investigative Radiology. 38, 302–303.
                       Mankoff, D.A. and Eubank, W.B. (2006). Current and future use of positron emission tomography (PET) in
                         breast cancer. [Review] [91 refs]. Journal of Mammary Gland Biology & Neoplasia. 11, 125–136.
   387   388   389   390   391   392   393   394   395   396   397