Page 411 - Biomedical Engineering and Design Handbook Volume 2, Applications
P. 411

SURGICAL SIMULATION TECHNOLOGIES  389

                          35. James, D. L. and D. K. Pai,  ARTDEFO: Accurate real time deformable objects. In  Proceedings of
                            SIGGRAPH 99: 26th International Conference on Computer Graphics and Interactive Techniques. 1999: ACM.
                            Los Angeles, CA.
                          36. Nielsen, P. M., et al., Mathematical model of geometry and fibrous structure of the heart. American Journal
                            of Physiology, 1991. 260(4 Pt 2):H1365–78.
                          37. Wu, X., T. G. Goktekin, and F. Tendick, An interactive parallel multigrid FEM simulator. In Proceedings of
                            the International Symposium on Medical Simulation (ISMS 2004). 2004: Springer-Verlag, Berlin, Heidelberg.
                          38. Wu, X. and F. Tendick, Multigrid integration for interactive deformable body simulation. In Proceedings of
                            the International Symposium on Medical Simulation (ISMS 2004). 2004: Springer-Verlag, Berlin, Heidelberg.
                          39. Zhuang,  Y. and J. Canny, Haptic interaction with global deformations. In  Proceedings of the IEEE
                            International Conference on Robotics and Automation (ICRA 2000). 2000. San Francisco, CA.
                          40. Cotin, S., H. Delingette, and N. Ayache, Real-time elastic deformations of soft tissues for surgery simulation.
                            IEEE Transactions on Visualization and Computer Graphics, 1999. 5(1):62–73.
                          41. Picinbono, G., H. Delingette, and N. Ayache, Nonlinear and anisotropic elastic soft tissue models for med-
                            ical simulation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA
                            2001). 2001. Seoul, Korea.
                          42. Delingette, H., S. Cotin, and N. Ayache, Efficient linear elastic models of soft tissues for realtime surgery
                            simulation. In Medicine Meets Virtual Reality: 7. 1999. Amsterdam: IOS Press.
                          43. O’Brien, J. F. and J. K. Hodgins, Graphical modeling and animation of brittle fracture. In Proceedings of the
                            26th Annual Conference on Computer Graphics and Interactive Techniques. 1999: ACM Press/Addison-
                            Wesley Publishing Co. Los Angeles, CA.
                          44. Mor, A. B. and T. Kanade, Modifying Soft Tissue Models: Progressive cutting with minimal new element cre-
                            ation. In Proceedings of the Third International Conference on Medical Image Computing and Computer-
                            Assisted Intervention. 2000: Springer-Verlag. Pittsburgh, PA.
                          45. Brouwer, I., et al., Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation.
                            Studies in Health Technology and Informatics, 2001. 81:69–74.
                          46. Ottensmeyer, M. P., In vivo measurement of solid organ visco-elastic properties. Studies in Health Technology
                            and Informatics, 2002. 85:328–33.
                          47. Dhruv, N. and F. Tendick, Frequency dependence of compliance contrast detection. In Proceedings of the
                            Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, part of the ASME Int’l
                            Mechanical Engineering Congress and Exposition (IMECE 2000). 2000. Orlando, FL.
                          48. Jones, L. A. and I. W. Hunter, A perceptual analysis of stiffness. Experimental Brain Research, 1990. 79(1):150–56.
                          49. Jones, L. A. and I. W. Hunter, A perceptual analysis of viscosity. Experimental Brain Research, 1993. 94(2):
                            343–51.
                          50. Duck, F. A., Physical Properties of Tissue. 1990, London, UK: Academic Press.
                          51. Yamada, H., Strength of Biological Materials. 1970, Baltimore, MD: Williams & Wilkins.
                          52. Mendis, K. K., R. L. Stalnaker, and S. H. Advani, A constitutive relationship for large deformation finite
                            element modeling of brain tissue. Journal of Biomechanical Engineering, 1995. 117(3):279–85.
                          53. Miller, K., Constitutive model of brain tissue suitable for finite element analysis of surgical procedures.
                            Journal of Biomechanics, 1999. 32(5):531–37.
                          54. Miller, K., et al., Mechanical properties of brain tissue in-vivo: experiment and computer simulation. Journal
                            of Biomechanics, 2000. 33(11):1369–76.
                          55. Jiménez, P., F. Thomas, and C. Torras, 3D collision detection: a survey. Computers and Graphics, 2001.
                            25(2):269–85.
                          56. Lin, M. C., et al., Collision detection: algorithms and applications. In Algorithms for Robotic Motion and
                            Manipulation, J.-P. Laumond and M.H. Overmars, Editors. 1997, A K Peters, Ltd.
                          57. Lin, M. C. and D. Manocha, Collision and proximity queries. In Handbook of Discrete and Computational
                            Geometry, J.E. Goodman and J. O’Rourke, Editors. 2004, CRC Press.
                          58. Teschner, M., et al., Collision detection for deformable objects. Computer Graphics Forum, 2005. 24(1):61–81.
                          59. Larsson, T. and T. Akenine-Möller, Collision detection for continuously deforming bodies. In Proceedings of
                            Eurogrpahics 2001. 2001. 325–33. Manchester, UK.
                          60. van den Bergen, G., Efficient collision detection of complex deformable models using AABB trees. Journal
                            of Graphics Tools, 1997. 2(4):1–13.
   406   407   408   409   410   411   412   413   414   415   416