Page 255 - Biomimetics : Biologically Inspired Technologies
P. 255

Bar-Cohen : Biomimetics: Biologically Inspired Technologies DK3163_c008 Final Proof page 241 21.9.2005 3:08am




                    Molecular Design of Biological and Nano-Materials                           241

                    Branden, C.-I. and Tooze, J. Introduction to Protein Structure. 2nd ed. (1999) Garland Publishing, New York,
                         New York.
                    Brann, M.R. Molecular Biology of G-Protein-Coupled Receptors: Applications of Molecular Genetics to
                         Pharmacology. (1992) Birkhauser, Boston.
                    Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a
                         conducting silver wire. Nature 391 (1998) 775–778.
                    Djalali, R., Chen, Y.F., and Matsui, H. Au nanowire fabrication from sequenced histidine-rich peptide. J. Am.
                         Chem. Soc. 124 (2002) 13660–13661.
                    Fields, G.B. Induction of protein-like molecular architecture by self-assembly processes. Bioorg. Med. Chem.
                         7 (1999) 75–81.
                    Haga, T., Berstein, G., and Bernstein, G. G Protein-Coupled Receptors. (1999) CRC Press, Boca Raton,
                         Florida.
                    Hamad-Schifferli, K. Schwartz, J., Santos, A., Zhang, S., and Jacobson, J. Remote electronic control of DNA
                         hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415 (2002)
                         152–155.
                    Hartgerink, J.D., Beniash, E., and Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nano-
                         fibers. Science 294 (2001) 1684–1688.
                    Holmes, T.C., et al. Extensive neurite outgrowth and active neuronal synapses on peptide scaffolds. Proc. Natl
                         Acad. Sci. USA 97 (2000) 6728–6733.
                    Keren, K., Berman, R.S., Buchstab, E., Sivan, U., and Braun, E. DNA-templated carbon nanotube field-effect
                         transistor. Science 302 (2003) 1380–1382.
                    Kiley, P., Zhao, X., Vaughn, M., Baldo, M., Bruce, B. and Zhang, S. Self-assembling peptide detergents
                         stabilize isolated photosystem I on a dry surface for an extended time. PLOS Biol. 3 (2005) 1180–1186.
                    Kisiday, J., et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production
                         and cell division: implications for cartilage tissue repair. Proc. Natl Acad. Sci. USA 99 (2002)
                         9996–10001.
                    Lehn, J.-M. Supramolecular Chemistry : Concepts and Perspectives. (1995) John Wiley and Sons, New York,
                         New York.
                    Loll, P.J. Membrane protein structural biology: the high throughput challenge. J. Struct. Biol. 142 (2003)
                         144–153.
                    Mao, C., et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl Acad. Sci. USA 100 (2003) 6946–
                         6951.
                    Marini, D., et al. Left-handed helical ribbon intermediates in the self-assembly of a beta-sheet peptide.
                         NanoLetters 2 (2002) 295–299.
                    Mrksich, M. and Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-
                         made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25 (1996) 55–78.
                    Nowak, A.P., et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide
                         amphiphiles. Nature 417 (2002) 424–428.
                    Pauling, L. The Nature of the Chemical Bond, 3rd ed. (1960) Cornell University Press, Ithaca, New York.
                    Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D., and Tirrell, D.A. Reversible hydrogels from self-
                         assembling artificial proteins. Science 281 (1998) 389–392.
                    Petsko, G.A. and Ringe, D. Protein Structure and Function. (2003) New Science Press Ltd., London, UK.
                    Reches, M. and Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science
                         300 (2003) 625–627.
                    Sanjana, N. and Fuller, S.B. A fast flexible ink-jet printing method for patterning dissociated neurons in
                         culture. J. Neurosci. Methods 136 (2004) 151–163.
                    Santoso, S., et al. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and
                         nanovesicles. NanoLetters 2 (2002) 687–691.
                    Scheibel, T., et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective
                         metal deposition. Proc. Natl Acad. Sci. USA 100 (2003) 4527–4532.
                    Schneider, J.P., et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed
                         peptide. J. Am. Chem. Soc. 124 (2002) 15030–15037.
                    Schnur, J.M. Lipid tubules: a paradigm for molecular engineered structures. Science 262 (1993) 1669–1676.
                    Seeman, N.C. DNA in a material world. Nature 421 (2003) 427–431.
                    Seeman, N.C. Nanotechnology and the double helix. Sci. Am. 290 (2004) 64–69.
   250   251   252   253   254   255   256   257   258   259   260