Page 255 - Biomimetics : Biologically Inspired Technologies
P. 255
Bar-Cohen : Biomimetics: Biologically Inspired Technologies DK3163_c008 Final Proof page 241 21.9.2005 3:08am
Molecular Design of Biological and Nano-Materials 241
Branden, C.-I. and Tooze, J. Introduction to Protein Structure. 2nd ed. (1999) Garland Publishing, New York,
New York.
Brann, M.R. Molecular Biology of G-Protein-Coupled Receptors: Applications of Molecular Genetics to
Pharmacology. (1992) Birkhauser, Boston.
Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a
conducting silver wire. Nature 391 (1998) 775–778.
Djalali, R., Chen, Y.F., and Matsui, H. Au nanowire fabrication from sequenced histidine-rich peptide. J. Am.
Chem. Soc. 124 (2002) 13660–13661.
Fields, G.B. Induction of protein-like molecular architecture by self-assembly processes. Bioorg. Med. Chem.
7 (1999) 75–81.
Haga, T., Berstein, G., and Bernstein, G. G Protein-Coupled Receptors. (1999) CRC Press, Boca Raton,
Florida.
Hamad-Schifferli, K. Schwartz, J., Santos, A., Zhang, S., and Jacobson, J. Remote electronic control of DNA
hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415 (2002)
152–155.
Hartgerink, J.D., Beniash, E., and Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nano-
fibers. Science 294 (2001) 1684–1688.
Holmes, T.C., et al. Extensive neurite outgrowth and active neuronal synapses on peptide scaffolds. Proc. Natl
Acad. Sci. USA 97 (2000) 6728–6733.
Keren, K., Berman, R.S., Buchstab, E., Sivan, U., and Braun, E. DNA-templated carbon nanotube field-effect
transistor. Science 302 (2003) 1380–1382.
Kiley, P., Zhao, X., Vaughn, M., Baldo, M., Bruce, B. and Zhang, S. Self-assembling peptide detergents
stabilize isolated photosystem I on a dry surface for an extended time. PLOS Biol. 3 (2005) 1180–1186.
Kisiday, J., et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production
and cell division: implications for cartilage tissue repair. Proc. Natl Acad. Sci. USA 99 (2002)
9996–10001.
Lehn, J.-M. Supramolecular Chemistry : Concepts and Perspectives. (1995) John Wiley and Sons, New York,
New York.
Loll, P.J. Membrane protein structural biology: the high throughput challenge. J. Struct. Biol. 142 (2003)
144–153.
Mao, C., et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl Acad. Sci. USA 100 (2003) 6946–
6951.
Marini, D., et al. Left-handed helical ribbon intermediates in the self-assembly of a beta-sheet peptide.
NanoLetters 2 (2002) 295–299.
Mrksich, M. and Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-
made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25 (1996) 55–78.
Nowak, A.P., et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide
amphiphiles. Nature 417 (2002) 424–428.
Pauling, L. The Nature of the Chemical Bond, 3rd ed. (1960) Cornell University Press, Ithaca, New York.
Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D., and Tirrell, D.A. Reversible hydrogels from self-
assembling artificial proteins. Science 281 (1998) 389–392.
Petsko, G.A. and Ringe, D. Protein Structure and Function. (2003) New Science Press Ltd., London, UK.
Reches, M. and Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science
300 (2003) 625–627.
Sanjana, N. and Fuller, S.B. A fast flexible ink-jet printing method for patterning dissociated neurons in
culture. J. Neurosci. Methods 136 (2004) 151–163.
Santoso, S., et al. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and
nanovesicles. NanoLetters 2 (2002) 687–691.
Scheibel, T., et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective
metal deposition. Proc. Natl Acad. Sci. USA 100 (2003) 4527–4532.
Schneider, J.P., et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed
peptide. J. Am. Chem. Soc. 124 (2002) 15030–15037.
Schnur, J.M. Lipid tubules: a paradigm for molecular engineered structures. Science 262 (1993) 1669–1676.
Seeman, N.C. DNA in a material world. Nature 421 (2003) 427–431.
Seeman, N.C. Nanotechnology and the double helix. Sci. Am. 290 (2004) 64–69.