Page 46 - Biosystems Engineering
P. 46
Micr oarray Data Analysis Using Machine Learning Methods 27
analysis. In addition to advanced computational methods that are
capable of extracting knowledge from complex and high-dimensional
data, this task requires careful experimental design (randomization
and replication), sample collection, and preparation to control system-
atic bias. Ransohoff (2005) noted recently that bias presents the greatest
difficulty at every step of design, conduct, and interpretation. Analysis
results need to go through a thorough interlaboratory validation to
ensure accurate biological interpretation.
References
Amari, S. 1995. Learning and statistical inference. In: The Handbook of Brain Theory
and Neural Networks, ed. M. A. Arbib, 522–526. Cambridge, MA: MIT Press.
Ando, S. and Iba, H. 2001.Inference of gene regulatory model by genetic algorithms.
712–719. Proceedings of the 2001 IEEE Congress on Evolutionary Computation,
Seoul, Korea.
Band, M. R., Olmstead, C., Everts, R. E., Liu, Z. L., and Lewin, H. A. 2002. A 3800
gene microarray for cattle functional genomics: comparison of gene expression
in spleen, placenta, and brain. Animal Biotechnology 13:163–172.
Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F., Gordon, et
al. 2003. Computational discovery of gene modules and regulatory networks.
Nature Biotechnology 21(11):1337–1342.
Bezdek, J. C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. New
York: Plenum Press.
Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C.,
et al. 2001. Classification of human lung carcinomas by mRNA expression pro-
filing reveals distinct adenocarcinoma subclasses. The Proceedings of the National
Academy of Sciences, USA, 98:13790–13795.
Chen, T., He, H. L., and Church, G. M. 1999. Modeling gene expression with
differential equations. Pacific Symposium on Biocomputing, Big Island, Hawaii
4:29–40.
Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka,
L., Wolfsberg, T. G., et al. 1998. A genomewide transcriptional analysis of the
mitotic cell. Molecular Cell 2:65–73.
Clerc, M. and Kennedy, J. 2002. The particle swarm: explosion stability and conver-
gence in a multi-dimensional complex space. IEEE Transactions on Evolutionary
Computing 6(1):58–73.
D’haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, R. 1999. Linear modeling
of mRNA expression levels during CNS development and injury. Pacific
Symposium on Biocomputing 4:41–52.
Diez-Tascon, C., Keane, O. M., Wilson, T., Zadissa, A., Hyndman, D. L., Baird, D. B.,
McEwan, J. C., et al. 2005. Microarray analysis of selection lines from outbred
populations to identify genes involved with nematode parasite resistance in
sheep. Physiological Genomics 21(1):59–69.
Dudoit, S. and Fridlyand, J. 2002. A prediction-based resampling method to estimate
the number of clusters in a dataset. Genome Biology 3(7):0036.1–0036.21.
Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. 1998. Cluster analysis
and display of genomewide expression patterns. Proceedings of the National
Academy of Science, USA 95:14863-8.
Engelbrecht, A. P. 2003. Computational Intelligence: An Introduction. Chichester, UK:
Wiley.
Fraley, C. and Raftery, A. E. 2002. Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association 97:611–631.
Friedman, N., Linial, M., Nachman, I., and Pe’er, D. 2000. Using Bayesian networks
to analyze expression data. Journal of Computational Biology 7(3–4):601–620.