Page 46 - Biosystems Engineering
P. 46

Micr oarray Data Analysis Using Machine Learning Methods       27

               analysis. In addition to advanced computational methods that are
               capable of extracting knowledge from complex and high-dimensional
               data, this task requires careful experimental design (randomization
               and replication), sample collection, and preparation to control system-
               atic bias. Ransohoff (2005) noted recently that bias presents the greatest
               difficulty at every step of design, conduct, and interpretation. Analysis
               results need to go through a  thorough interlaboratory validation to
               ensure accurate biological interpretation.




          References
               Amari, S. 1995. Learning and statistical inference. In: The Handbook of Brain Theory
                  and Neural Networks, ed. M. A. Arbib,  522–526. Cambridge, MA: MIT Press.
               Ando, S. and Iba, H. 2001.Inference of gene regulatory model by genetic algorithms.
                  712–719. Proceedings of the 2001 IEEE Congress on Evolutionary Computation,
                  Seoul, Korea.
               Band, M. R., Olmstead, C., Everts, R. E., Liu, Z. L., and Lewin, H. A. 2002. A 3800
                  gene microarray for cattle functional genomics: comparison of gene expression
                  in spleen, placenta, and brain. Animal Biotechnology 13:163–172.
               Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F., Gordon, et
                  al. 2003. Computational discovery of gene modules and regulatory networks.
                  Nature Biotechnology 21(11):1337–1342.
               Bezdek, J. C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. New
                  York: Plenum Press.
               Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C.,
                  et al. 2001. Classification of human lung carcinomas by mRNA expression pro-
                  filing reveals distinct adenocarcinoma subclasses. The Proceedings of the National
                  Academy of Sciences, USA, 98:13790–13795.
               Chen, T., He, H. L., and Church, G. M. 1999. Modeling gene expression with
                  differential equations. Pacific Symposium on Biocomputing, Big Island, Hawaii
                  4:29–40.
               Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka,
                  L., Wolfsberg, T. G., et al. 1998. A genomewide transcriptional analysis of the
                  mitotic cell. Molecular Cell 2:65–73.
               Clerc, M. and Kennedy, J. 2002. The particle swarm: explosion stability and conver-
                  gence in a multi-dimensional complex space. IEEE Transactions on  Evolutionary
                  Computing 6(1):58–73.
               D’haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, R. 1999. Linear modeling
                  of mRNA expression levels during CNS development and injury.  Pacific
                  Symposium on Biocomputing 4:41–52.
               Diez-Tascon, C., Keane, O. M., Wilson, T., Zadissa, A., Hyndman, D. L., Baird, D. B.,
                  McEwan, J. C., et al. 2005. Microarray analysis of selection lines from outbred
                  populations to identify genes involved with nematode parasite resistance in
                  sheep. Physiological Genomics 21(1):59–69.
               Dudoit, S. and Fridlyand, J. 2002. A prediction-based resampling method to estimate
                  the number of clusters in a dataset. Genome Biology 3(7):0036.1–0036.21.
               Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. 1998. Cluster analysis
                  and display of genomewide expression patterns. Proceedings of the National
                  Academy of Science, USA 95:14863-8.
               Engelbrecht, A. P. 2003. Computational Intelligence: An Introduction. Chichester, UK:
                  Wiley.
               Fraley, C. and Raftery, A. E. 2002. Model-based clustering, discriminant analysis, and
                  density estimation. Journal of the American Statistical Association 97:611–631.
               Friedman, N., Linial, M., Nachman, I., and Pe’er, D. 2000. Using Bayesian networks
                  to analyze expression data. Journal of Computational Biology 7(3–4):601–620.
   41   42   43   44   45   46   47   48   49   50   51