Page 137 - Calculus Demystified
P. 137

CHAPTER 5
                     124
                               5.1.2      L’HÔPITAL’S RULE                Indeterminate Forms
                               Theorem 5.1 (l’Hôpital’s Rule)
                               Let f(x) and g(x) be differentiable functions on (a, c) ∪ (c, b). If
                                                     lim f(x) = lim g(x) = 0
                                                     x→c        x→c
                               then

                                                          f(x)        f (x)
                                                      lim      = lim       ,
                                                      x→c g(x)    x→c g (x)

                               provided this last limit exists as a finite or infinite limit.
                                  Let us learn how to use this new result.
                                   EXAMPLE 5.1
                                   Evaluate
                                                                 ln x
                                                          lim          .
                                                               2
                                                          x→1 x + x − 2
                                   SOLUTION
                                     We first notice that both the numerator and denominator have limit zero
                                   as x tends to 1. Thus the quotient is indeterminate at 1 and of the form 0/0.
                                   l’Hôpital’s Rule therefore applies and the limit equals

                                                               (d/dx)(ln x)
                                                        lim                  ,
                                                                    2
                                                       x→1 (d/dx)(x + x − 2)
                                   provided this last limit exists. The last limit is
                                                           1/x            1
                                                      lim        = lim         .
                                                                          2
                                                      x→1 2x + 1   x→1 2x + x
                                   Therefore we see that
                                                                ln x      1
                                                         lim            = .
                                                              2
                                                         x→1 x + x − 2    3
                                                                                          2
                               You Try It: Apply l’Hôpital’s Rule to the limit lim x→2 sin(πx)/(x − 4).
                               You Try It: Usel’Hôpital’sRuletoevaluatelim h→0 (sin h/h)andlim h→0 (cos h−
                               1/h). These limits are important in the theory of calculus.
                                   EXAMPLE 5.2
                                   Evaluate the limit
                                                                   x 3
                                                             lim        .
                                                            x→0 x − sin x
   132   133   134   135   136   137   138   139   140   141   142