Page 132 - Calculus Demystified
P. 132
CHAPTER 4
The Integral
119
Fig. 4.20
SOLUTION
On the given interval, sin x ≥ cos x. See Fig. 4.21. Thus the area we wish to
compute is
5π/4
Area = [sin x − cos x] dx
π/4
x=5π/4
=[− cos x − sin x]
x=π/4
√ √
√ √
2 2 2 2
= − − − − − − −
2 2 2 2
√
= 2 2.
y
y = sin x
x
y = cos x
Fig. 4.21
You Try It: Calculate the area between y = sin x and y = cos x, −π ≤ x ≤ 2π.
2
You Try It: Calculate the area between y = x and y = 3x + 4.