Page 132 - Calculus Demystified
P. 132

CHAPTER 4
                                      The Integral
                                                                                                 119







                                                    Fig. 4.20
                         SOLUTION
                           On the given interval, sin x ≥ cos x. See Fig. 4.21. Thus the area we wish to
                         compute is
                                            5π/4
                                  Area =      [sin x − cos x] dx
                                          π/4
                                                       x=5π/4
                                      =[− cos x − sin x]
                                                       x=π/4
                                                                    √      √
                                             √          √
                                                 2         2           2     2
                                      = − −         − −         − −      −
                                                2          2          2     2
                                          √
                                      = 2 2.
                                                y








                                                          y = sin x

                                                                          x
                                                    y = cos x







                                                    Fig. 4.21


                     You Try It: Calculate the area between y = sin x and y = cos x, −π ≤ x ≤ 2π.
                                                              2
                     You Try It: Calculate the area between y = x and y = 3x + 4.
   127   128   129   130   131   132   133   134   135   136   137