Page 128 - Calculus Demystified
P. 128

The Integral
                     CHAPTER 4
                         discussion preceding this example, we know then that                    115
                                                1            4

                                      Area =     f(x) dx −    f(x) dx
                                               −3           1

                                                1
                                                  3     2
                                           =     x − 2x − 11x + 12 dx
                                               −3
                                                  4
                                                          2
                                                    3
                                             −     x − 2x − 11x + 12 dx
                                                1
                                                4      3      2         1
                                               x    2x     11x
                                           =      −     −       + 12x
                                                4    3      2            −3
                                                  4      3      2         4
                                                 x    2x     11x
                                             −      −     −       + 12x     .            (∗)
                                                  4    3      2
                                                                         1
                         Here we are using the standard shorthand
                                                           b
                                                      F(x)| a
                         to stand for
                                                 F(b) − F(a).
                         Thus we have
                                                    160    297
                                              (∗) =     +     .
                                                     3     12
                         Notice that, by design, each component of the area has made a positive
                         contribution to the final answer. The total area is then
                                                        937
                                                 Area =     .
                                                         12
                         EXAMPLE 4.9
                         Calculate the (positive) area between f(x) = sin x and the x-axisfor
                         −2π ≤ x ≤ 2π.

                         SOLUTION
                           We observe that f(x) = sin x ≥ 0 for −2π ≤ x ≤−π and 0 ≤ x ≤ π.
                         Likewise, f(x) = sin x ≤ 0 for −π ≤ x ≤ 0 and π ≤ x ≤ 2π. As a result

                                                −π             0
                                       Area =      sin xdx −     sin xdx
                                               −2π            −π

                                                   π            2π
                                              +     sin xdx −     sin xdx.
                                                  0            π
   123   124   125   126   127   128   129   130   131   132   133