Page 134 - Calculus Demystified
P. 134

The Integral
                     CHAPTER 4
                        2. Calculate each of the following indefinite integrals:                  121

                                          2
                              (a)   x sin x dx
                                             2
                              (b)   (3/x) ln x dx

                              (c)   sin x · cos xdx

                              (d)   tan x · ln cos xdx

                                       2
                              (e)   sec x · e tan x  dx
                                               2         43
                              (f)   (2x + 1) · (x + x + 7) dx
                        3. Use Riemann sums to calculate each of the following integrals:
                                      2  2
                              (a)    x + xdx
                                    1
                                      1  2
                              (b)     (−x /3)dx
                                    −1
                        4. Use the FundamentalTheorem of Calculus to evaluate each of the following
                            integrals:
                                      3
                                            3
                                      2
                              (a)    x − 4x + 7 dx
                                    1
                                      6  2
                              (b)    xe x  − sin x cos xdx
                                    2
                                      4
                                                    2
                              (c)    (ln x/x) + x sin x dx
                                    1
                                      2
                                                   3
                                             2
                              (d)   1  tan x − x cos x dx
                                      e
                                         2
                              (e)    (ln x /x) dx
                                    1
                                      8
                                                   3
                                      2
                                             3
                              (f)    x · cos x sin x dx
                                    4
                        5. Calculate the area under the given function and above the x-axis over the
                            indicated interval.
                                           2
                              (a)  f(x) = x + x + 6   [2, 5]
                              (b)  g(x) = sin x cos x  [0,π/4]
                              (c)  h(x) = xe x 2  [1, 2]
                              (d)  k(x) = ln x/x  [1,e]
                        6. Draw a careful sketch of each function on the given interval, indicating
                            subintervals where area is positive and area is negative.
                                           3
                              (a)  f(x) = x + 3x    [−2, 2]
                              (b)  g(x) = sin 3x cos 3x  [−2π, 2π]
                              (c)  h(x) = ln x/x  [1/2,e]
                                           3 x
                              (d)  m(x) = x e  4  [−3, 3]
   129   130   131   132   133   134   135   136   137   138   139