Page 170 - Calculus Demystified
P. 170

CHAPTER 6
                     and              Transcendental Functions                                   157

                                                  du
                                           exp(u)    dx = exp(u) + C.
                                                  dx
                        We note for the record that the exponential function is the only function (up to
                     constant multiples) that is its own derivative. This fact will come up later in our
                     applications of the exponential
                         EXAMPLE 6.9
                         Compute the derivatives:
                                  d           d               d
                                    exp(4x),    (exp(cos x)),   ([exp(x)]·[cot x]).
                                 dx          dx              dx
                         SOLUTION
                           For the first problem, notice that u = 4x hence du/dx = 4. Therefore we
                         have
                                    d                      d
                                      exp(4x) =[exp(4x)]·    (4x) = 4 · exp(4x).
                                   dx                     dx
                         Similarly,

                              d                            d
                                (exp(cosx))=[exp(cosx)]·     cosx =[exp(cosx)]·(−sinx),
                              dx                          dx

                          d                    d                            d
                            ([exp(x)]·[cotx])=    exp(x) ·(cotx)+[exp(x)]·    cotx
                         dx                    dx                          dx
                                                                           2
                                           =[exp(x)]·(cotx)+[exp(x)]·(−csc x).
                     You Try It: Calculate (d/dx)(exp(x · sin x)).
                         EXAMPLE 6.10
                         Calculate the integrals:

                                                         3
                                    exp(5x) dx,   [exp(x)] dx,    exp(2x + 7)dx.
                         SOLUTION
                           We have

                                              1
                                 exp(5x) dx =   exp(5x) + C
                                              5

                                       3
                                [exp(x)] dx =   [exp(x)]·[exp(x)]·[exp(x)] dx

                                                             1
                                           =    exp(3x) dx =   exp(3x) + C
                                                             3

                                              1                      1
                             exp(2x + 7)dx =      exp(2x + 7) · 2 dx =  exp(2x + 7) + C.
                                              2                      2
   165   166   167   168   169   170   171   172   173   174   175