Page 171 - Calculus Demystified
P. 171

158     EXAMPLE 6.11   CHAPTER 6         Transcendental Functions
                                   Evaluate the integral
                                                              3            2
                                                      [exp(cos x)]· sin x · cos xdx.
                                   SOLUTION
                                     For clarity, we let ϕ(x) = cos x, ϕ (x) = 3 cos x · (− sin x). Then the
                                                                3
                                                                                 2

                                   integral becomes
                                              1                          1
                                            − 3   exp(ϕ(x)) · ϕ (x) dx =− 3  exp(ϕ(x)) + C.


                                   Resubstituting the expression for ϕ(x) then gives

                                           [exp(cos x)]· sin x · cos xdx =− 1  exp(cos x) + C.
                                                                                    3
                                                   3
                                                                 2
                                                                           3
                                   EXAMPLE 6.12
                                   Evaluate the integral

                                                           exp(x) + exp(−x)  dx.
                                                           exp(x) − exp(−x)
                                   SOLUTION         TEAMFLY
                                     For clarity, we set ϕ(x) = exp(x) − exp(−x), ϕ (x) = exp(x) + exp(−x).

                                   Then our integral becomes
                                                         ϕ (x) dx

                                                          ϕ(x)   = ln |ϕ(x)|+ C.
                                     Resubstituting the expression for ϕ(x) gives

                                             exp(x) + exp(−x)  dx = ln | exp(x) − exp(−x)|+ C.
                                             exp(x) − exp(−x)
                               You Try It: Calculate     x · exp(x − 3)dx.
                                                              2

                               6.2.3      THE NUMBER e
                               The number exp(1) is a special constant which arises in many mathematical and
                               physical contexts. It is denoted by the symbol e in honor of the Swiss mathematician
                               Leonhard Euler (1707–1783) who first studied this constant. We next see how to
                               calculate the decimal expansion for the number e.
                                  In fact, as can be proved in a more advanced course, Euler’s constant e satisfies
                               the identity
                                                                  1    n
                                                       n→+∞   1 +  n   = e.
                                                        lim







                                                         Team-Fly
                                                                  ®
   166   167   168   169   170   171   172   173   174   175   176