Page 175 - Calculus Demystified
P. 175

162
                                              a b  CHAPTER 6        Transcendental Functions
                                  (ii) a b−c  =
                                              a c
                                         b c
                                  (iii) (a ) = a b·c
                                        b
                                  (iv) a = d if and only if d 1/b  = a (provided b  = 0)
                                        0
                                  (v) a = 1
                                        1
                                  (vi) a = a
                                                 c
                                                     c
                                            c
                                 (vii) (a · d) = a · d .
                                   EXAMPLE 6.17
                                   Simplify each of the expressions
                                                              5 −7  · π 4  2  3 4
                                                       4 ln 3
                                                     (e )  ,         ,  (3 · x ) .
                                                              5 −3  · π 2
                                   SOLUTION
                                     We calculate:

                                               4 ln 3
                                             (e )   = e 4·ln 3  = (e ln 3 4  4
                                                                  ) = 3 = 81;
                                            5 −7  · π 4  −7−(−3)  4−2   −4    2    1    2
                                                    = 5        · π   = 5   · π =      · π ;
                                            5 −3  · π 2                           625
                                                        2 4
                                                 3 4
                                                                                     12
                                                               3 4
                                                                     8
                                             2
                                           (3 · x ) = (3 ) · (x ) = 3 · x 12  = 6561 · x .
                                                                               4
                               You Try It: Simplify the expression ln[e 3x  · e −y−5  · 2 ].
                                   EXAMPLE 6.18
                                   Solve the equation
                                                               3
                                                                   8
                                                             (x · 5) = 9
                                   for x.
                                   SOLUTION
                                     We have

                                            3
                                                                             3
                                                            3
                                                 8
                                          (x · 5) = 9 ⇒ x · 5 = 9   1/8  ⇒ x = 9  1/8  · 5 −1
                                                                                      9 1/24
                                                                      −1 1/3
                                                                 1/8
                                                       ⇒ x = (9     · 5  )    ⇒ x =       .
                                                                                      5 1/3
                                                             x
                               You Try It: Solve the equation 4 · 3 2x  = 7. [Hint: Take the logarithm of both
                               sides. See also Example 6.22 below.]
   170   171   172   173   174   175   176   177   178   179   180