Page 178 - Calculus Demystified
P. 178

CHAPTER 6
                         SOLUTION     Transcendental Functions                                   165
                           We take the natural logarithm of both sides:

                                                               4
                                                  x
                                                     3x
                                              ln(5 · 2 ) = ln      .
                                                               7 x
                         Applying the rules for logarithms we obtain
                                              x
                                                                     x
                                                      3x
                                          ln(5 ) + ln(2 ) = ln 4 − ln(7 )
                         or
                                         x · ln 5 + 3x · ln 2 = ln 4 − x · ln 7.
                         Gathering together all the terms involving x yields

                                           x ·[ln 5 + 3 · ln 2 + ln 7]= ln 4
                         or
                                                        3
                                              x ·[ln(5 · 2 · 7)]= ln 4.
                         Solving for x gives
                                                    ln 4
                                               x =       = log 280  4.
                                                   ln 280
                         EXAMPLE 6.23
                         Simplify the expression
                                               5 · log 3 − (1/4) · log 16
                                                                 7
                                                    7
                                           B =                        .
                                               3 · log 5 + (1/5) · log 32
                                                    7
                                                                 7
                         SOLUTION
                           The numerator of B equals
                                    5
                               log (3 ) − log (16 1/4 ) = log 243 − log 2 = log (243/2).
                                                        7
                                 7
                                                                  7
                                           7
                                                                          7
                         Similarly, the denominator can be rewritten as
                               3
                          log 5 + log (32 1/5 ) = log 125 + log 2 = log (125 · 2) = log 250.
                                                            7
                                                                    7
                                                                                  7
                                                  7
                             7
                                     7
                         Putting these two results together, we find that
                                              log 243/2
                                                 7
                                          B =            = log 250 (243/2).
                                               log 250
                                                  7
                                            √
                     You Try It: What does 3  2  mean (in terms of the natural logarithm function)?
                         EXAMPLE 6.24
                         Simplify the expression (log 9) · (log 16).
                                                 4
                                                        9
   173   174   175   176   177   178   179   180   181   182   183