Page 181 - Calculus Demystified
P. 181

168     SOLUTION       CHAPTER 6         Transcendental Functions
                                     We have
                                                         d  x −π  =−π · x −π−1 ,
                                                        dx
                                                         d   √ 3  √    √ 3−1
                                                         dx  x  =   3 · x   ,
                                                           d  e       e−1
                                                          dx  x = e · x  .
                                                           sin x−x 2               4π
                               You Try It: Calculate (d/dx)5     . Calculate (d/dx)x  .
                               6.4.2      GRAPHING OF LOGARITHMIC AND

                                          EXPONENTIAL FUNCTIONS
                               If a> 0 and f(x) = log x, x > 0, then
                                                     a
                                                                      1

                                                           f (x) =  x · ln a
                                                                     −1

                                                           f (x) =  x · ln a
                                                                    2
                                                    TEAMFLY
                                                            f(1) = 0.

                               Using this information, we can sketch the graph of f(x) = log x.
                                                                                      a


                                  If a> 1 then ln a> 0 so that f (x) > 0 and f (x) < 0. The graph of f is
                               exhibited in Fig. 6.6.










                                                               Fig. 6.6
                                  If 0 <a < 1 then ln a =− ln(1/a) < 0 so that f (x) < 0 and f (x) > 0. The


                               graph of f is sketched in Fig. 6.7.
                                  Since g(x) = a is the inverse function to f(x) = log x, the graph of g is the
                                               x
                                                                                 a
                               reflection in the line y = x of the graph of f (Figs 6.6 and 6.7). See Figs 6.8, 6.9.







                                                         Team-Fly
                                                                  ®
   176   177   178   179   180   181   182   183   184   185   186