Page 180 - Calculus Demystified
P. 180

CHAPTER 6
                         Similarly,   Transcendental Functions                                   167
                                         d              1
                                           (log x) =
                                               8
                                        dx           x · ln 8
                                  d                        1         d
                                    (log (x · cos x)) =            ·   (x · cos x)
                                       4
                                 dx                  (x · cos x) · ln 4 dx
                                                     cos x + (x · (− sin x))
                                                   =                     .
                                                        (x · cos x) · ln 4
                         EXAMPLE 6.26
                         Integrate

                                                            2
                                                 3 cot x  · (− csc x) dx.

                         SOLUTION
                                                                  2

                           Forclaritywesetϕ(x) = cot x,ϕ (x) =− csc x.Thenourintegralbecomes
                                                       1


                                   3 ϕ(x)  · ϕ (x) dx =    ·  3 ϕ(x)  · ϕ (x) · ln 3 dx
                                                     ln 3

                                                      1
                                                 =         · 3 ϕ(x)  + C.
                                                     ln 3
                         Resubstituting the expression for ϕ(x) now gives that
                                                              1
                                                    2
                                        3 cot x  · (− csc x) dx =  · 3 cot x  + C.
                                                             ln 3
                                                 3
                     You Try It: Evaluate (log (x )/x) dx.
                                              6
                     You Try It: Calculate the integral
                                                          2
                                                         x
                                                     x · 3 dx.

                        Our new ideas about arbitrary exponents and bases now allow us to formulate a
                     general result about derivatives of powers:
                        For any real exponent a we have
                                                  d  a       a−1
                                                    x = a · x   .
                                                 dx
                         EXAMPLE 6.27
                                                     √
                                                 −π
                                                         e
                         Calculate the derivative of x , x  3 , x .
   175   176   177   178   179   180   181   182   183   184   185