Page 177 - Calculus Demystified
P. 177

Transcendental Functions
                                                  CHAPTER 6
                     164
                                  We will be able to do calculations much more easily if we learn some simple
                               properties of logarithms and exponentials.
                                  If a> 0 and b> 0 then
                                                           a (log b)  = b.
                                                               a
                                  If a> 0 and b ∈ R is arbitrary then
                                                                b
                                                           log (a ) = b.
                                                             a
                                  If a> 0,b > 0, and c> 0 then

                                   (i) log (b · c) = log b + log c
                                                     a
                                         a
                                                             a
                                  (ii) log (b/c) = log b − log c
                                         a           a       a
                                               log b
                                  (iii) log b =   c
                                          a
                                               log a
                                                  c
                                                 1
                                  (iv) log b =
                                         a
                                               log a
                                                  b
                                  (v) log 1 = 0
                                         a
                                  (vi) log a = 1
                                         a
                                                              α
                                 (vii) For any exponent α, log (b ) = α · (log b)
                                                           a              a
                                  We next give several examples to familiarize you with logarithmic and
                               exponential operations.
                                   EXAMPLE 6.21
                                   Simplify the expression
                                                                             4
                                                     log 81 − 5 · log 8 − 3 · ln(e ).
                                                        3
                                                                   2
                                   SOLUTION
                                     The expression equals
                                           4          3        4
                                      log (3 )−5·log (2 )−3·lne = 4·log 3−5·[3·log 2]−3·[4·lne]
                                        3
                                                                       3
                                                    2
                                                                                   2
                                                                = 4·1−5·3·1−3·4·1=−23.
                               You Try It: What does log 5 mean in terms of natural logarithms?
                                                        3
                                   EXAMPLE 6.22
                                   Solve the equation
                                                                      4
                                                              x  3x
                                                             5 · 2  =
                                                                      7 x
                                   for the unknown x.
   172   173   174   175   176   177   178   179   180   181   182