Page 179 - Calculus Demystified
P. 179

166
                                   SOLUTION       CHAPTER 6         Transcendental Functions
                                     We have

                                                                 1
                                          (log 9) · (log 15) =        · log 16 = log 16 = 2.
                                                                          9
                                                                                   4
                                              4
                                                      9
                                                               log 4
                                                                  9
                   6.4        Calculus with Logs andExponentials to
                              Arbitrary Bases


                               6.4.1      DIFFERENTIATION AND INTEGRATION OF
                                          log x AND a     x
                                              a
                               We begin by noting these facts:
                                  If a> 0 then
                                                                              x
                                       d                                     a
                                               x
                                                                     x
                                          x
                                  (i)    a = a · ln a; equivalently,  a dx =    + C.
                                      dx                                    ln a
                                       d             1
                                 (ii)    (log x) =
                                            a
                                      dx           x · ln a
                               Math Note: As always, we can state these last formulas more generally as
                                                          d  u    u  du
                                                            a = a ·     · ln a
                                                         dx          dx
                               and
                                                      d          1 du    1
                                                        log u =    ·   ·    .
                                                           a
                                                     dx          u dx   ln a
                                   EXAMPLE 6.25
                                   Calculate
                                           d  x    d   cos x   d           d
                                             (5 ),   (3    ),    (log x),    (log (x · cos x)).
                                                                                4
                                                                    8
                                          dx       dx         dx          dx
                                   SOLUTION
                                     We see that
                                                           d   x     x
                                                             (5 ) = 5 · ln 5.
                                                          dx
                                   For the second problem, we apply our general formulation with a = 3, u =
                                   cos x to obtain

                                        d   cos x   cos x  d                cos x
                                          (3   ) = 3    ·     cos x · ln 3 = 3  · (− sin x) · ln 3.
                                       dx                  dx
   174   175   176   177   178   179   180   181   182   183   184