Page 239 - Calculus Demystified
P. 239

Applications of the Integral
                                               CHAPTER 8
                     226
                                                                                                     2
                                   rotation, it will generate a disk of radius 2−x, and hence area A(x) = π(2−x) .
                                   Thus the volume generated over the segment 1 ≤ x ≤ 2is
                                                               2

                                                                         2
                                                        V 2 =    π(2 − x) dx.
                                                              1
                                     In summary, the total volume of our solid of revolution is
                                                   V = V 1 + V 2
                                                         !                   "
                                                            3 1           3 2


                                                           x      −(2 − x)
                                                     = π        +
                                                            3         3
                                                              0             1

                                                           1                  1
                                                     = π     − 0 + −0 − −
                                                           3                  3
                                                        2π
                                                     =     .
                                                         3
                                   EXAMPLE 8.6
                                                            2
                                   The portion of the curve y = x between x = 1 and x = 4 isrotated about
                                   the x-axis (Fig. 8.16). What volume does the resulting surface enclose?























                                                              Fig. 8.16


                                   SOLUTION
                                                            2
                                                                                              2
                                     At position x, the curve is x units above the x-axis. The point (x, x ), under
                                                                           2
                                   rotation, therefore generates a circle of radius x .The disk that the circle bounds
   234   235   236   237   238   239   240   241   242   243   244