Page 251 - Calculus Demystified
P. 251

CHAPTER 8
                                                                Applications of the Integral
                           238  This last is a Riemann sum for the integral (1/[b − a]) ·    a b  f(x) dx. Thus, letting
                               the mesh of the partition go to zero, we declare
                                                                      1     b
                                                 average of f = σ =  b − a   f(x) dx.
                                                                          a
                                   EXAMPLE 8.17
                                   In a tropical rain forest, the rainfall at time t isgiven by ϕ(t) = 0.1 − 0.1t +
                                       2
                                   0.05t inchesper hour, 0 ≤ t ≤ 10. What isthe average rainfall for times
                                   0 ≤ t ≤ 6?
                                   SOLUTION
                                     We need only average the function ϕ:
                                                                           6
                                              average rainfall = σ =  1    ϕ(t) dt
                                                                   6 − 0  0
                                                            =  1  6  0.1 − 0.1t + 0.05t dt
                                                                                    2
                                                              6  0
                                                              1             2   0.05  3    6
                                                            =  6  0.1t − 0.05t +  3  t  0
                                                    TEAMFLY
                                                            = 0.1 − 0.3 + 0.6

                                                            = 0.4 inches per hour.
                                   EXAMPLE 8.18
                                   Let f(x) = x/2 − sin x on the interval [−2, 5]. Compare the average value
                                   of thisfunction on the interval with itsminimum and maximum.
                                   SOLUTION
                                     Observe that
                                                                  1

                                                          f (x) =  2  − cos x.
                                   Thus the critical points occur when cos x = 1/2, or at −π/3,π/3. We also
                                   must consider the endpoints −2, 5. The values at these points are

                                                    f(−2) =−1 + sin 2 ≈−0.0907026
                                                                   √
                                                               π     3
                                                 f(−π/3) =−    6  + √  2  ≈ 0.3424266
                                                             π     3
                                                   f(π/3) =  6  −  2  ≈−0.3424266
                                                             5
                                                      f(5) =  2  − sin 5 ≈ 3.458924.







                                                         Team-Fly
                                                                  ®
   246   247   248   249   250   251   252   253   254   255   256