Page 330 - Calculus Demystified
P. 330

Final Exam
                                             3
                             (c)  f  −1 (x) = x − x                                              317
                             (d)  f  −1 (x) = x/(x + 1)
                                             3
                             (e)  f  −1 (x) = x − 1
                                             3
                                           a · b −2
                      21.  The expression ln       simplifies to
                                             4
                                            c /d −3
                             (a)  3 ln a − 2ln b − 4ln c + 3ln d
                             (b)  3 ln a + 2ln b + 4ln c − 3ln d
                             (c)  4 ln a − 3ln b + 2ln c − 4ln d
                             (d)  3 ln a − 4ln b + 3ln c − 2ln d
                             (e)  4 ln a − 2ln b + 2ln c + 2ln d
                                             2
                      22.  The expression e ln a −ln b 3  simplifies to
                             (a)  2a · 3b
                                  2a
                             (b)
                                  3b
                                   2
                             (c)  a · b 3
                                  a 2
                             (d)
                                  b 3
                                    2 3
                             (e)  6a b

                                                x 2  if x< 1
                      23.  The function f(x) =              has limits
                                                x   if x ≥ 1
                             (a)  2 at c = 1 and −1at c = 0
                             (b)  1 at c = 1and4at c =−2
                             (c)  0 at c = 0and3at c = 5
                             (d)  −3at c =−3and2at c = 1
                             (e)  1 at c = 0and2at c = 2
                                                 x
                      24.  The function f(x) =       has limits
                                                2
                                               x − 1
                             (a)  3 at c = 1and2at c =−1
                             (b)  ∞ at c = 1and0at c =−1
                             (c)  0 at c = 0 and nonexistent at c =±1
                             (d)  2 at c =−2 and −2at c = 2
                             (e)  −∞ at c = 1 and +∞ at c =−1

                                                x 3  if x< 2
                      25.  The function f(x) = √             is continuous at
                                                  x  if x ≥ 2
                             (a)  x = 2 and x = 3
   325   326   327   328   329   330   331   332   333   334   335