Page 331 - Calculus Demystified
P. 331
318 (b) x = 2 and x =−2 Final Exam
(c) x =−2 and x = 4
(d) x = 0 and x = 2
(e) x = 2 and x = 2.1
26. The limit expression that represents the derivative of f(x) = x + x at
2
c = 3is
[(3 + h) + (3 + h)]−[3 + 3]
2
2
(a) h→0 h
lim
[(3 + 2h) + (3 + h)]−[3 + 3]
2
2
(b) lim
h→0 2 h 2
(c) lim [(3 + h) + (3 + h)]−[3 + 3]
2
h→0 2 h 2
(d) lim [(3 + h) + (3 + 2h)]−[3 + 3]
h→0 h
2
2
(e) lim [(3 + h) + (3 + h)]−[3 + 4]
h→0 h
x − 3
then
27. If f(x) = TEAMFLY
2
x + x
1
(a) f (x) = 2x + 1
x − x
2
(b) f (x) = x − 3
(c) f (x) = (x − 3) · (x + x)
2
2
(d) f (x) = −x + 6x + 3
2
2 (x + x) 2
(e) f (x) = x + 6x − 3
2
x + x
28. If g(x) = x · sin x then
2
(a) 2
f (x) = sin x 2
2
(b) f (x) = 2x sin x
3
2
(c) f (x) = x sin x
(d) f (x) = x cos x 2
2
2
(e) f (x) = sin x + 2x cos x 2
29. If h(x) = ln[x cos x] then
Team-Fly
®

