Page 55 - Calculus with Complex Numbers
P. 55

y == circle centre p, radius 2.  1n ttés case b0th singularities qzi are ùlside
        y. lrherefore



         y
        j zl 2 - lx i ( sl - sl ) - O .

               1
             +
           z

        y == circle centre p, radius 1/2.  1n this case neither singularity is inside y.
        lrherefore
             dz
                 =  O
         r  . z2 + 1
     by Cauchy's theorem.

     4 .8  Q u i c k ways of fi n d i ng resi d u es
     For simple poles there are quicker methods for linding residues th=  calculating
     the Laurent expansion and taking the - 101 Laurent coeflicient. For example we
     have the following.

     Cover r!// rule  lf flz) takes the form
        fl     g (z)
          z) =      ,
               C - C



     Proof The Taylor expansion for g (z) at z = c is



     which gives immediately

        fl     g (c)   ,
          z) =      + .!l (c) + ' ' '
               C - C



     Example  Corlsider again
           1          1
         z     =            :
        z q- 1  (z q- i ) (z -- i )
     which has simple poles at z = Ljzi . Covering up z - i, z + i in turn we have

              1        1         1         1        1            1
        Rej       =           =  , Res         =            = -  .
        k;           c + i k;   è-/ k;             c - i k;     è/
                                      - -J cz + 1
         -, .z2 + 1
                                                         - - g
                           = j
   50   51   52   53   54   55   56   57   58   59   60