Page 60 - Calculus with Complex Numbers
P. 60

Ffgure 5.2


     Example 3 Consider the integral

          2x
            cos
               4 t dt
                   .
         0
       The substitution z = eit gives



          2x
        /-










     where y is the unit circle.
       Observe that the integrand is already a Laurent expansioa indicating that there
     is a pole of order 5 at z = 0, and that the residue there is 6/ 16ï = 3/8/ .
       Hence we have

          z,r               (3   3a.
            cos4 t dt = ln'i x   =   .
         0                  W  4


     Example 4  Consider the integral


          2x
            sin lt cos 3/ dt.
         0
   55   56   57   58   59   60   61   62   63   64   65