Page 61 - Calculus with Complex Numbers
P. 61

M aking the substitution z = eit we obtain

          z,c               1   dz       1         1
             sin lt cos 3/ dt =     .:2 -     . / +
         0                    y
                         - k- /  ?      z   c   p
                            1 j Jc (g .. .y .1 . 1 j
                                '

                            /

                                                 '

                                j
                                 '
                             1 j ( c  - 1 .y sl .. sl j ty .
                         = - g /   4                z
     since the integrand is a Laurent expansion with no term in 1/z.
       Hence we have
          2x
             sin lt cos 3/ dt = 0.
         0



     Exam  ples

     Hvaluate the following integrals.

                      (2n./.$,,4)


                dt
            3 + 2 sin t




          2n. sin 5t
                 dt
         0  Sin t
          2n.
             cos6 t dt
         0
   56   57   58   59   60   61   62   63   64   65   66