Page 58 - Calculus with Complex Numbers
P. 58

E v a I u a t i o n o f f i n i t e

     r e a I i n t e g r a I s













     As a lirst application of the residue theorem (see Section 4.7) we describe a method
     for evaluating a certain class of real integrals over a linite interval.

     Example 1  Consider the integral

          1::   dt
         0   5 + 4 cos t '
       W e can transform this integral into a contour integral round the unit circle by
     making the substitution z = eit W e have dz = i eitdt = izdt which gives
     dt = dz/iz. We also have





       Therefore we get

                4
        j    5             dz  1             1  dz
          z:c  o!r os t - j iz 5 + 2tc + 1/c) - 'j- Jy 2c2 + 5c + 2 '

              +
                 c

     where y is the unit circle.
       W e now evaluate this contour integral using the residue theorem. Observe that
     2z2 + 5 . z + 2 = (2c + 1) (c + 2), therefore the singularities of the integrand occur
     at z = -2, - 1/2 (Figure 5. 1). Of these only z = - 1/2 is inside y, where the
     residue is
         1    1            1
                        =  ,
        -/ 4 .: +  5  =-1yz  3i
     using the method of differentiating the denominator (see Section 4.8).
       Hence we have


                           y
                        U
                       U
                                +

                              :


                               2
                              .
                      '
              +
                4

        1    5    o       J  2    5             1 l:,r
          1::  dt  1  dz .: + 2 '''U CK i X j/ = 3 '

                    t
                      '
                      '
                 c
                   s
   53   54   55   56   57   58   59   60   61   62   63