Page 200 - Cam Design Handbook
P. 200

THB7  8/15/03  1:58 PM  Page 188

          188                      CAM DESIGN HANDBOOK

             Let (x, y) be the coordinates of one point of the cam profile. The curve describing the
          cam profile can be represented in parametric form as
                                                2
                                      3
                                (
                                                    (
                                          (
                         xp () =  A p - ) +  B p - ) +  C p - )+  D xi  (7.26a)
                                                        p
                                    p
                                              p
                                                   xi
                                               i
                                         xi
                                     i
                                                         i
                               xi
                                                2
                                      3
                                          (
                                (
                         yp () =  A p - ) +  B p - ) +  C p - )+  D    (7.26b)
                                                    (
                                              p
                                    p
                                                        p
                               yi    i   yi    i   yi    i   yi
          for p i £ p £ p i+1 and i = 1,..., n - 1, with further definitions:
                                 p =  0,  p i 1  =  p + D p i          (7.27a)
                                  1
                                             i
                                         +
                                Dp =  Dx +  Dy  2                      (7.27b)
                                        2
                                  i     i   i
                                Dx =  x i+1  -  x ,  Dy =  y i+1  -  y . i  (7.27c)
                                  i
                                          2
                                              i
             Notice  that  parameter  p represents  a  length  measured  along  the  perimeter  of  the
                                          m
          polygon defined by the set of vertices {P i} 1 . In the foregoing description, x i and y i repre-
          sent, additionally, the Cartesian coordinates of the ith supporting point (SP) P i of the spline,
          while coefficients A ui, B ui, C ui, D ui, for u = x, y, and i = 1,..., n - 1, are determined as
          explained presently. Let us define the n¢(∫ n - 1)-dimensional vectors
                                         T
                              x ∫[x , ..., x  ¢ n  ] ,  y ∫[y , ..., y  ¢ n  ] T  (7.28a)
                                                  1
                                  1
                                         T
                                  ¢,
                             x ¢ ∫[x ..., x ¢ ] ,  y ¢ ∫[y ...,  y ¢ ] T  (7.28b)
                                                  ¢,
                                  1     ¢ n       1     ¢ n
          and
                                        T
                                                        T
                             x ¢¢∫ ¢¢ , ..., x ¢¢] ,  y ¢¢∫ ¢¢ , ...,  y ¢¢] .  (7.28c)
                                                [y
                                [x
                                                       ¢ n
                                  1
                                       ¢ n
                                                 1
             The relationships between x and x≤ and y and y≤ are linear (Rogers, 2001), namely,
                                 Ax¢¢ = 6 Cx,  Ay¢¢ = 6 Cy.             (7.29)
          Note that the A and C matrices appearing above are themselves functions of the coordi-
          nates of the SP. In fact the n¢¥ n¢ matrices A and C are defined as
                             È 2a 1,n ¢  a 1  0  0  L    a  ¢ n  ˘
                             Í  a  2a    a    0    L      0  ˙
                             Í  1    1 2 ,  2                ˙
                             Í 0   a  2  2a  2 3 ,  a 3  L  0  ˙
                         A = Í                               ˙
                             Í  M   M    O    O    O      M  ˙
                             Í 0    0    L   a  n  ¢¢¢  2a  n ¢¢¢ ¢¢  a  n  ¢¢  ˙
                                                     ,n
                             Í                               ˙
                             Î a  ¢ n  0  0   L    a n ¢¢  2a  n ¢¢ ¢ ˚
                                                            ,n
          and
                             - È b  b    0    0    L     b   ˘
                               1,n ¢  1                    ¢ n
                            Í  b   -b    b    0    L      0  ˙
                            Í  1     1 2 ,  2                ˙
                            Í 0    b  2  -b 2 3 ,  b 3  L  0  ˙
                         C = Í                               ˙
                            Í  M    M    O    O    O      M  ˙
                            Í 0     0    L   b    -b     b   ˙
                                                     ,n
                            Í                 n  ¢¢¢  n ¢¢¢ ¢¢  n ¢¢  ˙
                            Î b  ¢ n  0  0    L    b n ¢¢  -b  n  ¢¢ ¢ ˚
                                                           ,n
          where
   195   196   197   198   199   200   201   202   203   204   205