Page 303 - Carbon Nanotube Fibres and Yarns
P. 303
290 Carbon Nanotube Fibers and Yarns
[24] R. Postle, P. Burton, M. Chaikin, The torque in twisted singles yarns, J. Textile Inst. 55
(9) (1964) T448–T461.
[25] J.M. Bennett, R. Postle, A study of yarn torque and its dependence on the distribution
of fibre tensile stress in the yarn, part I: theoretical analysis, J. Text. Inst. 70 (4) (1979)
121–132.
[26] J.M.T. Thompson, A. Champneys, From helix to localized writhing in the torsional
post buckling of elastic rods, Proc. R. Soc. Lond. A 452 (1944) (1996) 117–138.
[27] R.H. Gong, R.M. Wright, Fancy Yarns: Their Manufacture and Application, Elsevier,
2002.
[28] M. Denton, Translated paper: the structural geometry and mechanics of false-twist-
textured yarns, J. Text. Inst. 66 (2) (1975) 80–86.
[29] J. Hearle, A. Yegin, 32-The snarling of highly twisted monofilaments. Part I: the load–
elongation behaviour with normal snarling, J. Text. Inst. 63 (9) (1972) 477–489.
[30] E. Belov, S.V. Lomov, N. Truevtzev, M. Bradshaw, R. Harwood, Study of yarn snarling.
Part I: critical parameters of snarling, J. Text. Inst. 93 (4) (2002) 341–365.
[31] W. Fraser, G. van der Heijden, On the theory of localised snarling instabilities in false-
twist yarn processes, J. Eng. Math. 61 (1) (2008) 81–95.
[32] A. Gent, K.C. Hua, Torsional instability of stretched rubber cylinders, Int. J. Nonlin.
Mech. 39 (3) (2004) 483–489.
[33] J. Coyne, Analysis of the formation and elimination of loops in twisted cable, IEEE J.
Ocean. Eng. 15 (2) (1990) 72–83.
[34] P. Jaswal, S. Sinha, The empirical modeling of snarling in staple yarn, J. Inst. Eng. India:
Ser. E. 95 (2) (2014) 81–87.
[35] D. Stump, W. Fraser, K. Gates, The writhing of circular cross–section rods: undersea
cables to DNA supercoils, Proc. R. Soc. Lond. Ser. A 454 (1998) 2123–2156.
[36] J.T. Thompson, G.M. van der Heijden, S. Neukirch, Supercoiling of DNA plasmids:
mechanics of the generalized ply, Proc. R. Soc. Lond. Ser. A 458 (2002) 959–985.
[37] J. Hearle, A. Yegin, 33—The snarling of highly twisted monofilaments. Part II: cylin-
drical snarling, J. Text. Inst. 63 (9) (1972) 490–501.
[38] A. Ghatak, L. Mahadevan, Solenoids and plectonemes in stretched and twisted elasto-
meric filaments, Phys. Rev. Lett. 95 (5) (2005) 057801.
[39] C.S. Haines, N. Li, G.M. Spinks, A.E. Aliev, J. Di, R.H. Baughman, New twist on
artificial muscles, Proc. Natl. Acad. Sci. 113 (2016) 11709–11716.
[40] H. Gu, M. Miao, Optimising fibre alignment in twisted yarns for natural fibre compos-
ites, J. Compos. Mater. 48 (24) (2014) 2993–3002.
[41] J.A. Lee, Y.T. Kim, G.M. Spinks, D. Suh, X. Lepró, M.D. Lima, R.H. Baughman,
S.J. Kim, All-solid-state carbon nanotube torsional and tensile artificial muscles, Nano
Lett. 14 (5) (2014) 2664–2669.
[42] P. Chen, S. He, Y. Xu, X. Sun, H. Peng, Electromechanical actuator ribbons driven by
electrically conducting spring-like fibers, Adv. Mater. 27 (34) (2015) 4982–4988.
[43] T. Mirfakhrai, J. Oh, M. Kozlov, E.C.W. Fok, M. Zhang, S. Fang, R.H. Baughman,
J.D.W. Madden, Electrochemical actuation of carbon nanotube yarns, Smart Mater.
Struct. 16 (2) (2007) S243.
[44] J. Foroughi, G.M. Spinks, G.G. Wallace, J. Oh, M.E. Kozlov, S. Fang, T. Mirfakhrai,
J.D. Madden, M.K. Shin, S.J. Kim, Torsional carbon nanotube artificial muscles, Science
334 (6055) (2011) 494–497.
[45] Y. Shang, Y. Li, X. He, S. Du, L. Zhang, E. Shi, S. Wu, Z. Li, P. Li, J. Wei, K. Wang,
H. Zhu, D. Wu, A. Cao, Highly twisted double-helix carbon nanotube yarns, ACS
Nano 7 (2) (2013) 1446–1453.
[46] P. Chen, Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, H. Peng, Hierarchically ar-
ranged helical fibre actuators driven by solvents and vapours, Nat. Nanotechnol. 10
(2015) 1077–1084.