Page 152 - Carbon Nanotubes
P. 152
142 P. C. EKLUND et al.
first-order, sharp modes are observed[27] at 1566 and 13. T. W. Ebbesen and P. M. Ajayan, Nature (London) 358,
1594 cm-’ , one downshifted and one upshifted from 220 (1992).
the value of the E2’, mode at 1582 cm-’ for graphite. 14. T. W. Ebbesen et al., Chem. Phys. Lett. 209, 83 (1993).
15. H. M. Duan and J. T. McKinnon, J. Phys. Chem. 49,
From zone-folding results, the near degeneracy of the 12815 (1994).
highest frequency Raman modes is removed with de- 16. M. Endo, Ph.D. thesis (in French), University of Or-
creasing tubule diameter; the mode frequencies spread, leans, Orleans, France (1975).
some upshifting and some downshifting relative to 17. M. Endo, Ph.D. thesis (in Japanese), Nagoya University,
Japan (1978).
their common large-diameter values. Thus, the obser- 18. M. Endo and H. W. Kroto, J. Phys. Chem. 96, 6941
vation of the sharp modes at 1566 cm-’ and 1592 (1992).
cm-’ for 1-2 nm tubules is consistent with this theo- 19. X. F. Zhang et al., J. Cryst. Growth 130, 368 (1993).
retical result. 20. S. Amelinckx et al., personal communication.
Finally, in second order, the Raman feature at 21. S. Iijima and T. Ichihashi, Nature (London) 363, 603
(1993).
-3180 cm-’ observed in Co- and Ni/Co-catalyzed 22. D. S. Bethune et al., Nature (London) 363, 605 (1993).
single-wall nanotube corresponds to a significantly 23. H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Taka-
downshifted 2 x Eig mode, where E& represents the hashi, Chem. Phys. Lett. 202, 509 (1993).
mid-zone (see Figs. la and Ib) frequency maximum of 24. N. Chandrabhas et al., PRAMA-J. Physics 42, 375
(1994).
the uppermost optic branch seen in graphite at 3250 25. J. Kastner et al., Chem. Phys. Lett. 221, 53 (1994).
cm-’ . 26. W. S. Bacsa, D. U. A., ChLtelain, and W. A. de Heer,
Phys. Rev. B 50, 15473 (1994).
27. J. M. Holden et al., Chem. Phys. Lett. 220, 186 (1994).
Acknowledgement-We gratefully acknowledge valuable dis- 28. J. M. Holden, R. A. Loufty, and P. C. Eklund
cussions with M. S. Dresselhaus and G. Dresselhaus, and Y. (unpublished).
F. Balkis for help with computations. One of the authors 29. P. Lespade, R. AI-Jishi, and M. S. Dresselhaus, Carbon
(RAJ) acknowledges AFOSR Grant No. F49620-92-5-0401. 20, 427 (1982).
The other author (PCE) acknowledges support from Univer- 30. A. W. Moore, In Chemistry and Physics of Carbon (Ed-
sity of Kentucky Center for Applied Energy Research and the ited by P. L. Walker and P. A. Thrower), Vol. 11, p. 69,
NSF Grant No. EHR-91-08764. Marcel Dekker, New York (1973).
31. L. J. Brillson, E. Burnstein, A. A. Maradudin, and T.
Stark, In Proceedings of the International Conference
on Semimetals and Narrow Gap Semiconductors (Edited
REFERENCES by D. L. Carter and R. T. Bate), p. 187, Pergamon Press,
New York (1971).
1. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and 32. Y. Wang, D. C. Alsmeyer, and R. L. McCreery, Chem.
G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993). Matter. 2, 557 (1990).
2. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and 33. F. Tunistra and J. L. Koenig, J. Chem. Phys. 53, 1126
G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993). (1970).
3. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, 34. X.-X. Bi et al., J. Mat. Res. (1994), submitted.
Phys. Rev. B 47, 16671 (1993). 35. J. C. Charlier, Ph.D. thesis (unpublished), Universite
4. E. G. Gal’pern, I. V. Stankevich, A. L. Christyakov, and Chatholique De Louvain (1994).
L. A. Chernozatonskii, JETP Lett. (Pis’ma Zh. Eksp. 36. W. S. Bacsa, W. A. de Heer, D. Ugarte, and A.
Teor.) 55, 483 (1992). Chgtelain, Chem. Phys. Lett. 211, 346 (1993).
5. N. Hamada, S.-I. Sawada, and A. Oshiyama, Phys. Rev. 37. S. Iijima, Nature (London) 354, 56 (1991).
Lett. 68, 1579 (1992). 38. S. Iijima, T. Ichihashi, and Y. Ando, Nature (London)
6. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem. 356, 776 (1992).
Phys. Lett. 195, 537 (1992). 39. P. M. Ajayan and S. Iijima, Nature (London) 361, 333
7. J. W. Mintmire, B. I. Dunalp, and C. T. White, Phys. (1993).
Rev. Lett. 68, 631 (1992). 40. L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, J; Phys.
8. I<. Harigaya, Chem. Phys. Lett. 189, 79 (1992). Chem. 97, 6941 (1993).
9. K. Tanaka et al., Phys. Lett. A164, 221 (1992). 41. S. C. Tsang, P. J. F. Harris, and M. L. H. Green, Na-
10. J. W. Mintmire, D. H. Robertson, and C. T. White, J. ture (London) 362, 520 (1993).
Phys. Chem. Solids 54, 1835 (1993). 42. P. M. Ajayan et al., Nature (London) 362, 522 (1993).
11. P. W. Fowler, J. Phys. Chem. Solids 54, 1825 (1993). 43. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tani-
12. C. T. White, D. H. Roberston, and J. W. Mintmire, gaki, Nature (London) 367, 519 (1994).
Phys. Rev. B 47, 5485 (1993). 44. C. H. Kiang et al., J. Phys. Chem. 98, 6612 (1994).