Page 197 - Chemical equilibria Volume 4
P. 197

For the internal energy:
                                                  ∂ ln Z           ∂ ln Z         Appendix 2     173
                                                             B ∑
                                  () U
                                UT    −  (0) = − ∑    C (A)  =  k T  2  C (A)           [A2.38]
                                                A   ∂ β          A    ∂ T
                             For the entropy:

                                       ⎡      1 ∂ ln Z ⎤
                                 S = k B ⎢  ln Z −   C  ⎥                               [A2.39]
                                           C
                                       ⎣      T ∂ ln β ⎦
                             For the Helmholtz energy function:

                                               ∑  ln Z C (A)
                                                             B ∑
                                 FT −    (0) = −  A      = − k T  ln Z                  [A2.40]
                                  () F
                                                   β            A     C (A)
                             For the pressure:

                             Using equation [A2.40], we calculate:


                                      ⎛  ∂ F ⎞         ⎛  ∂  ln Z C (A)  ⎞
                                                   B ∑
                                 P =− ⎜   ⎟     =  k T  ⎜        ⎟                      [A2.41]
                                      ⎝  ∂ V ⎠  , TN  A ,..  A ⎝  ∂ V A  ⎠  , TN A ,..
                             For the Gibbs energy:

                             Equations [A2.40] and [A2.41] enable us to write:
                                                     ∑ ln Z C (A)    ∂  ln Z
                              −
                            GG   (0) =  F −  F (0) PV−  = −  A  +  V  ∑ ⎛  ⎜  C (A) ⎞  ⎟  [A2.42]
                                                        β      β  A ⎝  ∂ V A  ⎠  , TN

                           NOTE ON THE MOLAR PROPERTIES.– in the expressions of the molecular and
                           canonical partition functions, we have  based our discussions on a certain
                           number of  molecules –  a number of particles  symbolized by  N A for the
                           component A.

                             In order to obtain the molar values of the thermodynamic functions, for
                           N A it is prudent to choose Avogadro’s number (N a).
   192   193   194   195   196   197   198   199   200   201   202