Page 199 - Chemical equilibria Volume 4
P. 199

relation and use Stirling’s first approximation  [A2.1], relation [A2.43]
                           becomes:                                               Appendix 2     175
                                   () G
                                 GT   −  i (0) = − N i k T  ln z + k T (N i ln N − N i ) PV+  i  [A2.44]
                                                             B
                                                                      i
                                                         i
                                                   B
                                  i
                             We shall use molar properties. In order to do so, we define a fraction of
                           molar partition  z im   given by:
                                          ()
                                       z
                                 z   =  i                                               [A2.45]
                                  ()
                                  im
                                       n i
                             This definition is tantamount to replacing the volume V in the calculation
                           of the translational partition function with the molar volume v i(m).

                             In standard conditions, at temperature T, the Gibbs energy of n moles of
                           the component i, which is a supposedly-perfect gas (P iV = n iRT), becomes:

                                                      z
                                   () =
                                                       ()
                                  0
                                 gT     g 0 (0) n T−  R ln  im                          [A2.46]
                                         i
                                                i
                                  i
                                                      N a
                             For the reaction, we write:
                                                                            ()
                                 Δ gT =   ∑  a gT     ∑  a g 0 i  (0) RT−  ∑  a i  ln  z im  [A2.47]
                                                 ( ) =
                                                0
                                    0
                                     ()
                                              i
                                                i
                                                         i
                                  r
                                    i
                                           i           i             i     N a
                             However, at the temperature of 0K, for a perfect gas, we have:
                                                  −
                                      =
                                                             ≅
                                             +
                                 g i 0 (0) u 0 i  (0) PV TS =  h i 0 (0) u i 0 (0)      [A2.48]
                             Consequently, relation [A2.47] becomes:
                                                              ()
                                     () Δ u T=
                                    0
                                 Δ gT       r  0 () RT−  ∑ a i ln  z im                 [A2.49]
                                    i
                                  r
                                                       i      N a
                                             ()
                                            0
                             The term  Δ uT  is the linear combination, weighted by the
                                          r
                           stoichiometric numbers, of the residual energies of vibration of each of the
   194   195   196   197   198   199   200   201   202   203   204