Page 248 - Chiral Separation Techniques
P. 248

226     9 Modeling and Simulation in SMB for Chiral Purification

                 Initial conditions:
                 t = 0:  c = q = 0                                                 (19)
                          ij   ij
                 Boundary conditions for section j:
                            D  dc ij
                 z = 0 :  c −  L j  =  c                                           (20)
                        ij  ν        ij 0,
                             j  dz
                 where c  is the inlet concentration of species i in section j.
                        ij,0
                 z = L :
                     j
                 For the eluent node               ν I
                                              c  =    c                           (21a)
                                               iIV  ν  iI,0
                                                    IV
                 For the extract node        c = c                               (21b)
                                              iI   iII,0
                 For the feed node                ν         ν
                                              c =   III  c  −  F  c F             (21c)
                                               iII  ν  iIII,0  ν  i
                                                    II       II
                 For the raffinate node      c   = c                             (21d)
                                              iIII  iIV,0
                 And    q   = q , q = q   ,q = q    ,q  = q                        (22)
                         iIV   iI,0  iI  iII,0  iII  iIII,0  iIII  iIV,0
                 Global balances:
                 Eluent node                 ν = ν + ν                            (23a)
                                               I  IV   E
                 Extract node                ν = ν – ν                           (23b)
                                               II  I   X
                 Feed node                   ν = ν + ν                            (23c)
                                               III  II  F
                 Raffinate node              ν = ν – ν                           (23d)
                                               IV  III  R
                 Multicomponent adsorption equilibrium isotherm:
                                    *
                 q *  = f (c , c ) and q = f (c , c )                              (24)
                  Aj  A   Aj  Bj    Bj   B  Aj  Bj
                                                                                     *
               Introducing the dimensionless variables x = z/L and θ = t/τ , with τ = L /u = N t ,
                                                       j          s      s   j  s   s
               where τ is the solid space time in a section of a TMB unit, L is the length of a TMB
                     s                                            j
               section, and N is the number of columns per section in a SMB unit, the model equa-
                           s
               tions become:
                                      
                                            2
                               ∂c ij  =  γ   ∂ c ij  −  ∂c   1 −  ε)  *          (25)
                                                  ij  (
                                       1
                                                     −
                               ∂θ    j  Pe j  ∂x 2  ∂x   ε  α q −(  ij  q )
                                                                   ij
                                                             j
                                      
                                                    
                               ∂q ij  =  ∂q ij  +  *                               (26)
                               ∂θ    ∂x  α q −(  ij  q )
                                                 ij
                                           j
   243   244   245   246   247   248   249   250   251   252   253