Page 130 - Circuit Analysis II with MATLAB Applications
P. 130

Chapter 4  The Laplace Transformation


                                    f       f                       f            f
                   ^
                L f t  *f t   `  =  ³  f W    ³  f O  e – s O    W +    dO dW =  ³  f W  e – sW dW ³  f O  e – sO dO
                                                                      1
                     1
                          2
                                      1
                                              2
                                                                                   2
                                   0        0                       0            0
                                =  F s  F s
                                         2
                                    1
         13. Convolution in the Complex Frequency Domain
         Convolution in the complex frequency domain divided by 12Sj , corresponds to multiplication in the
                                                              e
         time domain. That is,
                                                   1
                                       f t  f t   œ  -------- F s  *F s                         (4.36)
                                       1
                                           2
                                                       1
                                                              2
                                                  2Sj
         Proof:
                                                      f
                                   L f t  f t  ^  1  2  `  =  ³  f t  f t  e – st dt            (4.37)
                                                        1
                                                            2
                                                     0
         and recalling that the Inverse Laplace transform from (4.2) is
                                                 1    V +  jZ    Pt
                                         f t   =  --------  ³ V jZ  F P  e dP
                                         1
                                                            1
                                                2Sj
                                                      –
         by substitution into (4.37), we get
                                               f  1    V +  jZ
                                                                  Pt
                             L f t  f t  ^  1  2  `  =  ³  --------  ³  F P  e dP f t  e – st dt
                                                                        2
                                                             1
                                               0  2Sj  V jZ
                                                        –
                                               1
                                                                            –
                                           =  --------  ³ V +  jZ F P    ³  f f t  e     s –  P t dt dP
                                              2Sj  V –  jZ  1  0  2
                                                    –
         We observe that the bracketed integral is F s P    ; therefore,

                                                2
                                          1   V +  jZ                  1
                         Lf t  f t  ^  1  2  `  =  --------  ³  F P  F s P–   2     dP =  --------F s  *F s
                                                                           1
                                                                                 2
                                                    1
                                                                      2Sj
                                         2Sj
                                              V –  jZ
         For easy reference, we have summarized the Laplace transform pairs and theorems in Table 4.1.
         4.3 The Laplace Transform of Common Functions of Time
         In this section, we will present several examples for finding the Laplace transform of common func-
         tions of time.
         Example 4.1

                ^
         Find L u t   `
                   0

        4-12                                                Circuit Analysis II with MATLAB Applications

                                                                                  Orchard Publications
   125   126   127   128   129   130   131   132   133   134   135