Page 127 - Civil Engineering Formulas
P. 127

BEAM FORMULAS                    69

               TABLE 2.5 Stress Factors for Inner Boundary at Central Section (see Fig. 2.23)
               1. For the arch-type beams
                                   h      if    R o   R i
                 (a) K   0.834   1.504                5
                                 R o   R i       h
                                    h             R o   R i
                 (b) K   0.899   1.181     if   5         10
                                 R o   R i          h
                 (c) In the case of larger section ratios use the equivalent beam solution
               2. For the crescent I-type beams
                                   h      if    R o   R i
                 (a) K   0.570   1.536                2
                                 R o   R i       h
                                    h             R o   R i
                 (b) K   0.959   0.769     if   2         20
                                 R o   R i          h
                              h     0.0298    if    R o   R i
                 (c) K   1.092                     	 20
                            R o   R i          h
               3. For the crescent II-type beams
                                   h      if    R o   R i
                 (a) K   0.897   1.098                8
                                 R o   R i       h
                              h     0.0378      R o   R i
                 (b) K   1.119           if   8         20
                            R o   R i              h
                              h     0.0270    if    R o   R i
                 (c) K   1.081                     	 20
                            R o   R i          h



             section determined above must then be multiplied by the  position factor k,
             given in  Table 2.6.  As in the concentric beam, the  neutral surface shifts
             slightly toward the inner boundary. (See Vidosic, “Curved Beams with Eccen-
             tric Boundaries,” Transactions of the ASME, 79, pp. 1317–1321.)


             ELASTIC LATERAL BUCKLING OF BEAMS


             When lateral buckling of a beam occurs, the beam undergoes a combination of
             twist and out-of-plane bending (Fig. 2.24). For a simply supported beam of
             rectangular cross section subjected to uniform bending, buckling occurs at the
             critical bending moment, given by


                                   M cr    2 EI y GJ              (2.26)
                                        L
   122   123   124   125   126   127   128   129   130   131   132