Page 140 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 140

MIXED STATES AND THE PARTICLE FILTER                         129

            particles. The density can be estimated from the particles by some
            kernel-based method, for instance, the Parzen estimator to be discussed
            in Section 5.3.1.
              A problem in the particle filter is that we do not know the posterior
            density beforehand. The solution for that is to get the samples from some
            other density, say q(x), called the proposal density. The various members
            of the PF family differ (among other things) in their choice of this
            density. The expectation of g(x) w.r.t. p(xjz) becomes:
                         Z
               E½gðxÞjzм   gðxÞpðxjzÞdx
                         Z
                                pðxjzÞ
                       ¼    gðxÞ      qðxÞdx
                                 qðxÞ
                         Z
                                pðzjxÞpðxÞ
                       ¼    gðxÞ          qðxÞdx                       ð4:72Þ
                                 pðzÞqðxÞ
                         Z
                                wðxÞ                      pðzjxÞpðxÞ
                       ¼    gðxÞ     qðxÞdx with: wðxÞ¼
                                pðzÞ                         qðxÞ
                           1  Z
                       ¼        gðxÞwðxÞqðxÞdx
                         pðzÞ
            The factor 1/p(z) is a normalizing constant. It can be eliminated as
            follows:

                                      Z
                               pðzÞ¼    pðzjxÞpðxÞdx

                                      Z
                                                  qðxÞ
                                    ¼   pðzjxÞpðxÞ    dx               ð4:73Þ
                                                  qðxÞ
                                      Z
                                    ¼   wðxÞqðxÞdx

            Using (4.72) and (4.73) we can estimate E[g(x)jz] by means of a set of
            samples drawn from q(x):
                                          K
                                          P
                                                ðkÞ   ðkÞ
                                             wðx Þgðx Þ
                                          k¼1
                               E½gðxÞjzŠffi                              ð4:74Þ
                                             K
                                             P
                                                   ðkÞ
                                                wðx Þ
                                             k¼1
            Being the ratio of two estimates, E[g(x)jz] is a biased estimate. However,
            under mild conditions, E[g(x)jz] is asymptotically unbiased and consistent
   135   136   137   138   139   140   141   142   143   144   145