Page 104 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 104

CONTINUOUS STATE VARIABLES                                    93


                           15
                           10               +1σ boundary
                            5
                            0
                           –5
                          –10               –1σ boundary
                          –15
                             0              50     i       100
            Figure 4.4  Random walk




            The model can be cast into a state space model by defining
                def           T
            x(i) ¼ [x(i) x(i   1)] :


                               xði þ 1Þ                  wðiÞ
                    xði þ 1Þ¼           ¼         xðiÞþ                ð4:20Þ
                                 xðiÞ       1  0           0
                                           1     1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2
                                                      2
            The eigenvalues of this system are / 2    / 2    þ 4 .If   >  4 , the
            system can be regarded as a cascade of two first order AR processes with
                                             2
            two real eigenvalues. However, if   <  4 , the eigenvalues become
                                                       p ffiffiffiffiffiffiffi
            complex and can be written as de  2 jf  with j ¼   1. The magnitude of
                                                p ffiffiffiffiffiffiffi
            the eigenvalues, i.e. the damping, is d ¼    . The frequency f is found
            by the relation cos 2 f ¼   jj/(2d). The solution of the Lyapunov equa-
            tion is obtained by multiplying (4.19) on both sides by x(i þ 1), x(i) and
            x(i   1), and taking the expectation:


            E½xði þ 1Þxði þ 1ފ ¼ E½ xðiÞxði þ 1Þþ  xði   1Þxði þ 1Þþ wðiÞxði þ 1ފ
               E½xði þ 1Þxðiފ ¼ E½ xðiÞxðiÞþ  xði   1ÞxðiÞþ wðiÞxðiފ
            E½xði þ 1Þxði   1ފ ¼ E½ xðiÞxði   1Þþ  xði   1Þxði   1Þþ wðiÞxði   1ފ
                             +
                                         2
                           2
                                 2
                            ¼    r 1 þ    r 2 þ   2 w                  ð4:21Þ
                                 x
                           x
                                         x
                          2      2     2
                          r 1 ¼    þ    r 1
                          x      x     x
                          2
                                 2
                          r 2 ¼    r 1 þ    2 x
                          x
                                 x
                             +
                                     2
                                     þ       2    2         2 w
                   r 1 ¼       r 2 ¼              ¼
                                                  x
                        1             1              1   ar 1    r 2
   99   100   101   102   103   104   105   106   107   108   109