Page 120 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 120
CONTINUOUS STATE VARIABLES 109
A better approach is the so-called iterated extended Kalman filter
(IEKF). Here, the approximation is made that both the predicted state
and the measurement noise are normally distributed. With that, the
posterior probability density (4.9)
1
pðxðiÞjZðiÞÞ ¼ pðxðiÞjZði 1ÞÞpðzðiÞjxðiÞÞ ð4:50Þ
c
being the product of two Gaussians, is also a Gaussian. Thus, the MMSE
estimate coincides with the MAP estimate, and the task is now to find
the maximum of p(x(i)jZ(i)). Equivalently, we maximize its logarithm.
After the elimination of the irrelevant constants and factors, it all boils
down to minimizing the following function w.r.t. x:
1 T 1 1 T 1
fðxÞ¼ ðx x p Þ C ðx x p Þ þ ðz hðxÞÞ C ðz hðxÞÞ ð4:51Þ
p
v
2 2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
comes from pðxðiÞjZði 1ÞÞ comes from pðzðiÞjxðiÞÞ
For brevity, the following notation has been used:
x p ¼ xðiji 1Þ
C p ¼ Cðiji 1Þ
z ¼ zðiÞ
C v ¼ C v ðiÞ
The strategy to find the minimum is to use Newton–Raphson iteration
starting from x 0 ¼ x(iji 1). In the ‘-th iteration step, we have already
an estimate x ‘ 1 obtained from the previous step. We expand f(x)in a
second order Taylor series approximation:
T qfðx ‘ 1 Þ
fðxÞffi fðx ‘ 1 Þþ ðx x ‘ 1 Þ
qx
ð4:52Þ
2
1 T q fðx ‘ 1 Þ
þ ðx x ‘ 1 Þ ðx x ‘ 1 Þ
2 qx 2
2
2
where qf/qx is the gradient and q f/qx is the Hessian of f(x). See
Appendix B.4. The estimate x ‘ is the minimum of the approximation.