Page 169 - Compact Numerical Methods For Computers
P. 169

158               Compact numerical methods for computers
                                                   F( 10 )= 22228.5
                                                  F( 15 )= 22174.2
                                                  SUCCESS
                                                  F(  22.5)=  22202.2
                                                  PARAMIN STEP= 2.15087
                                                  F( 17.1509 )= 22168.6
                                                  NEW K4=-1.78772
                                                  F( 15.3631 )= 22172.6
                                                  FAILURE
                                                  F( 17.5978 )= 22168.8
                                                  PARAMIN STEP= 7.44882E-02
                                                  F( 17.2253 )= 22168.6
                                                  NEW K4=-.018622
                                                  F( 17.2067 )= 22168.6
                                                  SUCCESS
                                                  F( 17.1788 )= 22168.6
                                                  PARAMIN   STEP=-4.65551E-03
                                                  F( 17.2021 )= 22168.6
                                                  PARAMIN FAILS
                                                  NEW K4= 4.65551E-03
                                                  F( 172114 )= 22168.6
                                                  FAILURE
                                                  F( 17.2055 )= 22168.6
                                                  PARAMIN FAILS
                                                  NEW K4= 0
                                                  MIN   AT  17.2067   =  22168.6
                                                   12   FN  EVALS
                                                  STOP AT 0060
                                                  *



                               The effect of step length choice is possibly important. Therefore, consider the
                             following applications of algorithm 17 using a starting value of t = 10.


                                           Step length  Minimum at     Function evaluations

                                               1          17·2264             13
                                               5          17·2067             12
                                               10         17·2314             10
                                              20          17·1774             11

                             The differences in the minima are due to the flatness of this particular function,
                             which may cause difficulties in deciding when the minimum has been located. By
                             way of comparison, a linear search based on the success-failure/inverse interpola-
                             tion sequence in algorithm 22 found the following minima starting from t = 10.


                                           Step length   Minimum at    Function evaluations
                                                1         17·2063             23
                                               5          17·2207             23
                                               10         17·2388             21
                                               20         17·2531             24
   164   165   166   167   168   169   170   171   172   173   174