Page 236 - Compact Numerical Methods For Computers
P. 236

224               Compact numerical methods for computers
                            TABLE 18.2. Data for the problem of Z Hassan specified by (18.21) and (18.22). Column j below
                                         gives the observations y ij , for rows i=1, 2, . . . , m, for m = 26.
                                 1           2            3           4            5           6
                              286·75      309·935     -40·4026      1132·66     0·1417     0·6429
                              274·857     286·75        1·3707     1092·26      0·01626    0·7846
                              286·756     274·857      43·1876      1093·63     0·01755    0·8009
                              283·461     286·756     -20·0324     1136·81      0·11485    0·8184
                              286·05      283·461      31·2226      1116·78     0·001937   0·9333
                              295·925     286·05       47·2799      1148       -0·0354     0·9352
                              299·863     295·925       4·8855      1195·28     0·00221    0·8998
                              305·198     299·863      62·22        1200·17     0·00131    0·902
                              317·953     305·198      57·3661      1262·39     0·01156    0·9034
                              317·941     317·953       3·4828      1319·76     0·03982    0·9149
                              312·646     317·941       7·0303     1323·24      0·03795    0·9547
                              319·625     312·646      38·7177      1330·27    -0·00737    0·9927
                              324·063     319·625      15·1204      1368·99     0·004141   0·9853
                              318·566     324·063      21·3098      1384·11     0·01053    0·9895
                              320·239     318·566      42·7881      1405·42     0·021       1
                              319·582     320·239      45·7464      1448·21     0·03255     1·021
                              326·646     319·582      57·9923      1493·95     0·016911   1·0536
                              330·788     326·646      65·0383      1551·94     0·0308     1·0705
                              326·205     330·788      51·8661      1616·98     0·069821   1·1013
                              336·785     326·205      67·0433      1668·85     0·01746    1·1711
                              333·414     336·785      39·6747      1735·89     0·045153   1·1885
                              341·555     333·414      49·061       1775·57     0·03982    1·2337
                              352·068     341·555      18·4491      1824·63     0·02095    1·2735
                              367·147     352·068      74·5368      1843·08     0·01427    1·2945
                              378·424     367·147     106·711       1917·61     0·10113     1·3088
                              385·381     378·424     134·671       2024·32     0·21467     1·4099


                             unconstrained problem, in our example six instead of five, and (b) because the
                             unconstrained problem must be solved for each increase of the weighting w.
                             Furthermore, the ultimate de-scaling of the problem as w is made large may cause
                             slow convergence of the iterative algorithms.
                               In order to see how the penalty function approach works for inequality
                             constraints where there is no corresponding elimination, consider the following
                             problem (Dixon 1972, p 92): minimise

                                                                                              (18.24)
                             subject to
                                                           3b +4b <6                          (18.25)
                                                             1
                                                                 2
                             and
                                                          -b +4b <2.                          (18.26)
                                                            1
                                                                 2
                               The constraints were weighted equally in (18.15) and added to (18.24). The
                             resulting function was minimised using the Nelder-Mead algorithm starting from
                             b = b =0 with a step of 0·01 to generate the initial simplex. The results are
                                 2
                              1
                             presented in table 18.4 together with the alternative method of assigning the
   231   232   233   234   235   236   237   238   239   240   241